

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CONFIGURATION TOOL PROTOTYPE FOR THE
TRUSTED COMPUTING EXEMPLAR PROJECT

by

Terrence M. Welliver

December 2009

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: Paul C. Clark

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Configuration Tool for the Trusted Computing Exemplar Project
6. AUTHOR(S) Terrence M. Welliver

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The creation of a configuration vector file used to initialize the Least Privilege Separation Kernel (LPSK) of the
Trusted Computing Exemplar (TCX) project to an initial secure state is currently a manual process that is tedious and
error prone. A software application that removes many of the complexities of creating a valid configuration vector
file is needed.

This thesis describes the first steps taken to design and implement a graphical user interface (GUI) configuration
vector tool that enables a user to easily create valid configuration vector files (both human-readable and binary). The
tool allows a user to focus on the meaning of the configuration vector rather than on the syntactic details of the file.

A prototype of the configuration vector tool was successfully designed, implemented, and tested in this thesis. The
prototype provides the first functional GUI software application that creates configuration vector files. The logical
design of the toll will permit further extensions to be readily incorporated.

15. NUMBER OF
PAGES

119

14. SUBJECT TERMS
trusted computing exemplar, least privilege separation kernel, graphical user interface, wxpython, java,
configuration vector, lpsk, configuration vector tool, tcx, gui, skpp

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CONFIGURATION TOOL PROTOTYPE FOR THE TRUSTED COMPUTING
EXEMPLAR PROJECT

Terrence M. Welliver

Civilian, Naval Postgraduate School
B.S., United States Air Force Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2009

Author: Terrence M. Welliver

Approved by: Cynthia E. Irvine
Thesis Advisor

Paul C. Clark
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The creation of a configuration vector file used to initialize the Least Privilege

Separation Kernel (LPSK) of the Trusted Computing Exemplar (TCX) project to an

initial secure state is currently a manual process that is tedious and error prone. A

software application that removes many of the complexities of creating a valid

configuration vector file is needed.

This thesis describes the first steps taken to design and implement a graphical user

interface (GUI) configuration vector tool that enables a user to easily create valid

configuration vector files (both human-readable and binary). The tool allows a user to

focus on the meaning of the configuration vector rather than on the syntactic details of

the file.

A prototype of the configuration vector tool was successfully designed,

implemented, and tested in this thesis. The prototype provides the first functional GUI

software application that creates configuration vector files. The logical design of the toll

will permit further extensions to be readily incorporated.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..2
B. PURPOSE OF STUDY..3
C. THESIS ORGANIZATION..3

II. BACKGROUND ..5
A. TRUSTED COMPUTING EXEMPLAR PROJECT...................................5

1. Trusted Computing Overview ..6
2. Separation Kernel ..8
3. The TCX LPSK..10
4. Configuration Vector Tool ..11

B. GRAPHICAL USER INTERFACES...12
1. Model-View-Controller Paradigm ...13
2. Java and MVC..15
3. GUI Terminology...16

C. SUMMARY ..18

III. DESIGN ..19
A. OVERVIEW OF DEVELOPMENT TOOLS ...19

1. Tool Selection Process..19
2. Java Swing and NetBeans ...23

B. CONFIGURATION VECTOR FORMAT..24
1. Basics...24
2. Structure Overview..25
3. MVC Model Component ...29

C. THE PRIMARY GRAPHICAL DESIGN ELEMENT..............................29
D. DESIGN REFINEMENT ..30
E. CONFIGURATION VECTOR TOOL REQUIREMENTS38

1. Basic Requirements ...38
2. Detailed Requirements ..41
3. Error Message Requirements ...45

F. CONFIGURATION VECTOR TOOL FEATURE SET47
1. Minimum Feature Set..47
2. Features Users Expect ...48
3. Graphical Interface Standards ...49

G. CONCEPTUAL DESIGN OF THE CONFIGURATION VECTOR
TOOL..50

H. SUMMARY ..56

IV. IMPLEMENTATION AND TESTING...57
A. JAVA CLASS FILES ..57
B. PRIMARY GUI CLASS..59
C. PROTOTYPE...62

1. Screenshots ...62

 viii

2. Concept of Operation ..67
D. TESTING..69

1. Phase I: Error Checking ...70
2. Phase II: Input/Output ..76
3. Test Summary ..80

E. SUMMARY ..81

V. RESULTS ...83
A. PROBLEMS ENCOUNTERED...83

1. wxPython ..83
2. NetBeans Tables ...84

B. INCOMPLETE FEATURES..84
C. FUTURE WORK...86

1. Interface ..86
2. Additional Features ...87
3. Refinements ..88
4. Documentation ...88

D. CONCLUSION ..89

APPENDIX...91

LIST OF REFERENCES..97

INITIAL DISTRIBUTION LIST ...99

 ix

LIST OF FIGURES

Figure 1. An example of the allocation of subjects and resources along with the
information flow in a separation kernel [4] .. 9

Figure 2. Illustrates the lifecycle of the configuration vector from initial creation to the
initialization of the LPSK to a secure state... 11

Figure 3. MVC interaction diagram [6] ... 14
Figure 4. Java Swing MVC based architecture diagram [7] .. 16
Figure 5. GUI elements referenced in this thesis ... 17
Figure 6. Configuration vector excerpt from lpsk.h .. 26
Figure 7. Configuration vector structure diagram based on the lpsk.h............................ 28
Figure 8. Illustrates the transformation of the vector_struct attributes to table

column headers ... 30
Figure 9. Illustration depicting the incorporation of the tables and vector_struct

attributes into a main application window.. 32
Figure 10. Illustration of the nesting child tables within parent tables 33
Figure 11. A refinement of the initial window design showing the addition of the

partition-to-partition table... 34
Figure 12. A refinement of the process and subject tables. The two tables are merged

into one window ... 35
Figure 13. All permissions columns within each table is represented by a common

interface window .. 36
Figure 14. Final table column headers as defined by the lpsk.h file 37
Figure 15. A complete design concept of the vector_struct... 38
Figure 16. Configuration vector tool state transition diagram ... 40
Figure 17. Conceptual sketch of the partition table ... 51
Figure 18. Conceptual sketch of the datafile table ... 52
Figure 19. Conceptual sketch of the memory table.. 52
Figure 20. Conceptual sketch of the event counts table... 53
Figure 21. Conceptual sketch of the sequencers table ... 53
Figure 22. Conceptual sketch of the partition-to-partition table .. 54
Figure 23. Conceptual sketch of the subject resource table ... 54
Figure 24. Conceptual sketch of the processes window and subjects table 55
Figure 25. Conceptual sketch of the permissions window and table 55
Figure 26. Partition table view of the application .. 62
Figure 27. Datafile table view of the application ... 63
Figure 28. Memory table view of the application .. 63
Figure 29. Eventcounts table view of the application .. 64
Figure 30. Sequencers table view of the application.. 64
Figure 31. Partition-to-partition table view of the application... 65
Figure 32. Subject-resource permissions table view of the application................................. 65
Figure 33. Process and subject window of the application .. 66
Figure 34. Permissions window and associated table view of the application 66
Figure 35. The vector attribute panel of the main window .. 67
Figure 36. View of row zero of the partition table... 68

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Candidate development language criteria..20
Table 2. Candidate development languages comparison ...21
Table 3. The possible output file type given a specific input file type40
Table 4. Constant values defined by the lpsk.h file ..41
Table 5. Mapping of permissions from the human-readable format to the binary

format...42
Table 6. Upper and lower bounds for all objects contained within every struct of

the vector_struct...44
Table 7. Dependency relationships of configuration vector fields45
Table 8. Minimum configuration vector tool features ...48
Table 9. Java class files of the configuration vector tool...59
Table 10. List of the basic commands of the configuration vector tool...........................61
Table 11. Vector attributes panel restrictions ..70
Table 12. Partition table restrictions ..71
Table 13. Datafile table restrictions ...71
Table 14. Memory table restrictions ..72
Table 15. Eventcounts table restrictions ..72
Table 16. Sequencer table restrictions ...72
Table 17. Partition-to-partition table restrictions...72
Table 18. Subject-resource table restrictions ...73
Table 19. Process window restrictions...73
Table 20. Permissions window restrictions..73
Table 21. Special tests table for starred entries..76
Table 22. Commands used to verify the CVDump tool...77
Table 23. Verification of CVDump command line tool ..77
Table 24. Test results for creating a new configuration vector..78
Table 25. Test results for opening a configuration vector ...79
Table 26. Test results for saving a configuration vector..80
Table 27. Test results for exporting a configuration vector...80

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Programming Interface

AWT Abstract Window Toolkit

CC Common Criteria

EAL Evaluation Assurance Level

GUI Graphical User Interface

IAD Information Assurance Directorate

IDE Integrated Development Environment

IO Input/Output

IT Information Technology

JDK Java Development Kit

LPSK Least Privilege Separation Kernel

MVC Model-View-Controller

NSA National Security Agency

PIFP Partitioned Information Flow Policy

SKPP Separation Kernel Protection Profile

SMDN Sun Microsystems Developer Network

SPT Special Tests

TCX Trusted Computing Exemplar

TPA Trusted Path Application

UI User-Interface

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Cynthia Irvine, for her outstanding support

and guidance throughout the development of this thesis. I would also like to thank Paul

Clark for his support and insights as a second reader. A special thanks to Valerie Linhoff

for supporting me during this whole process. In addition, I would like to thank Lt Col

Joel Young for pointing me in the right direction during the programming phase of this

thesis. Finally, I would like to thank my wife, Beth, for her support and patience

throughout the thesis process.

This material is based upon work supported by the National Science Foundation,

under grant No. DUE-0414102. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author, and do not

necessarily reflect the views of the National Science Foundation.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Graphical user interfaces (GUI) have changed the way people interact with

computers. Unlike command line interfaces, GUIs do not require a user to learn

complicated sequences of words and symbols to complete an operation. Thus, the

learning curve for a GUI application is significantly less steep than for a command line

interface. A GUI also abstracts away the sometimes-complicated syntax necessary for

completing some task.

For instance, suppose a corporation wishes to collect specific information from

several different users and analyze it. The corporation could request the required

information from each user by individually asking each user to provide a, b, and c. The

corporation could go even one step further and request the information in a specific

format. While this approach may work, it is not very efficient. Users are prone to make

errors, especially when it comes to correctly formatting data. Most likely, the corporation

will receive the information it desires in a variety of formats. If the corporation receives

the requested data in the wrong format, someone would need to transpose the data into

the correct format. This increases the cost of obtaining and analyzing the required data.

Thus, a different approach is necessary.

Instead, the corporation could create a GUI form and require users to enter data in

the form. The form graphically organizes the data for the user. The user will most likely

find this method of data collection much easier than a simple request for data from the

corporation. In addition, the underlying code of the form will automatically ensure that

the data is in the correct format. This allows the corporation to collect the desired data

from the users more effectively and efficiently. Thus, the corporation can spend the

majority of time analyzing the data.

The example above reflects goals similar to those presented in this thesis. In this

case, the goal is to easily create configuration files (for a particular kind of system) that

contain no syntax errors. The configuration file for the system of interest is referred to as

a configuration vector. This file is in a binary format and is used to initialize an

 2

instantiation of the system to an initial secure state. The configuration vectors contain a

substantial amount of data that must be entered by a user. The configuration vector is

syntactically complex and requires the user to be very meticulous during its creation. In

order to focus the user on the semantic meaning of the configuration vector, the creation

of a GUI tool to assist in configuration vector definition was proposed. It is expected that

such a tool would ensure that data entered by the user is exported in the correct format.

The next section describes the motivation for this research followed by the purpose of the

study.

A. MOTIVATION

The Trusted Computing Exemplar (TCX) project provides an example of how

high assurance components are designed and built. One of the main components of the

project is the Least Privilege Separation Kernel (LPSK). The LPSK controls the flow of

information between resources by separating system resources into different subsets

called partitions. The LPSK is initialized to an initial secure state through the use of a

binary configuration vector file.

Without a GUI, a trusted user initially creates a human-readable configuration

vector file. This human-readable configuration vector would then be converted into a

binary file that the LPSK can consume. The process of creating a configuration vector

file manually is likely to be a tedious, error-prone, and time-consuming process. This

process can be improved upon. One approach to create configuration vector files more

efficiently is to create a configuration vector definition tool that allows trusted users to

enter data and review graphically.

The configuration vector tool is an application that provides a GUI to the trusted

user to be used to create a valid configuration vector file. The configuration vector tool

provides essential bounds checking in order to ensure that a syntactically correct binary

configuration vector file is generated. This thesis describes the creation of such a tool.

 3

In order to accommodate future changes to either the interface (view) or the data

structure (model) of the application, standard design guidelines that separate view

components from model components were followed. This enables the configuration

vector tool to be easily modified to enhance usability or add new features.

B. PURPOSE OF STUDY

The objective of this research was to analyze the configuration vector currently

used by the LPSK and to create an application that provides a GUI to the trusted user.

This graphical interface provides an additional layer of abstraction to the trusted user,

who can then spend more time thinking about correct configurations rather than worrying

about syntax details. This tool should reduce the time it takes to create a configuration

vector while also helping the user make fewer configuration mistakes.

C. THESIS ORGANIZATION

Chapter I contains a brief introduction of the work along with its motivation and

organization. Chapter II provides the necessary background and foundation for

understanding the purpose of this research, which includes a brief overview of trusted

computing and separation kernels as well as an overview of graphical user interface

design. Chapter III contains the specific steps taken to develop the first prototype of the

configuration vector tool. The chapter begins with the language and development tool

selection. Next, the configuration vector format is discussed in detail. The next portion

describes the thought process behind the initial design and the refinement of that design

including the requirements and features for the configuration vector tool. Chapter IV

presents the implementation and testing of the configuration vector tool prototype.

Chapter V presents the main problems encountered as well as future implementation and

design ideas for the next version of the configuration vector tool.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This chapter provides the necessary foundation for this research in two sections.

The first section of the chapter discusses the Trusted Computing Exemplar (TCX) project

by first examining trusted computing and then discussing separation kernels. The section

then discusses the TCX implementation of a separation kernel. The section concludes

with the introduction of the configuration vector tool, which initiates the TCX separation

kernel to an initial secure state. The second section of the chapter discusses graphical

user interfaces (GUI). The section begins with a paradigm discussion followed by the

Java implementation of the paradigm. Finally, the section gives a brief overview of the

GUI terminology relevant to this thesis.

A. TRUSTED COMPUTING EXEMPLAR PROJECT

The TCX project is intended to be a worked example of how high assurance

components are designed and built. Not only will the TCX project provide components

for use in current architectures, it is intended to ensure that knowledge and technologies

associated with high assurance system development are available for future generations

of developers and researchers [1]. The development methodologies and technologies

from the TCX will be openly available and will fill a void in knowledge and research left

by limited or closed development of trusted systems by the U.S. Government and

commercial entities, respectively. The TCX objectives, listed below, highlight the

project’s overall goal of creating development methodologies and technologies.

• Creation of a prototype framework for rapid high assurance system
development;

• Development of a reference implementation trusted computing
component;

• Evaluation of the component for high assurance; and

• Open dissemination of deliverables related to the first three activities [1].

The next three sections provide an overview of trusted computing, a foundation

for the TCX platform (a separation kernel), and a description of the TCX separation

kernel implementation.

 6

1. Trusted Computing Overview

Trusted computing is an active area of research in computer science. Blindly

trusting a system by examining marketing documents and user manuals, and listening to

vendors describe a product’s security controls does not provide customers with sufficient

confidence that critical policies for the protection of information in information

technology (IT) systems are enforced. Trusted computing assures customers that the

computer will behave in accordance with a given security policy. Thus, trusted

computing addresses security at the most fundamental level.

In order to better understand trusted computing, trust and trustworthy must be

clearly defined. Imprecise definitions of these terms often lead to confusion or

misinterpretation. In addition, it is important to understand what makes a system

untrustworthy and how a system can be made more trustworthy. In the information

security world, the term trust is sometimes used inconsistently; but, for the average user,

trust simply means that the user believes the system is secure and the user can confide

personal information in that system [2]. In order to understand the TCX project, a precise

definition of trust is required.

trust: the degree to which the user or a component depends on the
trustworthiness of another component. For example, component A trusts
component B, or component B is trusted by component A. Trust and
trustworthiness are assumed to be measured on the same scale [2].

trustworthy: the degree to which the security behavior of the component is
demonstrably compliant with its stated functionality (e.g., trustworthy
component) [2].

From these definitions, a component is only trustworthy if and only if its

functionality is exactly as described in its specification and the component has no other

functionality. In other words, a highly trustworthy component will only do exactly what

its specification states and nothing else [1]. Although this is conceptually simple, the

implementation of such a component is difficult. Trusted systems enforce a given

security policy through hardware and software.

 7

Today’s most popular operating systems have hundreds of thousands, or even

millions of lines of code. Information security specialists and system designers are

unable to demonstrate that every component in the system is trustworthy and therefore

can be trusted. Thus, attempting to design highly trustworthy systems without

understanding and meeting the requirements is futile. Systems that cannot be

demonstrated to be trustworthy are considered untrustworthy. One approach to

developing more trustworthy systems involves creating small (relative to other systems)

and analyzable components. By creating such components, it is possible to create more

trustworthy systems.

Trusted system development is a design and engineering approach to develop

more trustworthy systems. Development processes need to address two different security

threats: operational and developmental [1]. A frontal attack is an example of an

operational threat. Frontal attacks are what the average person associates with computer

security. These attacks can range from computer viruses and worms to Trojan horses to

denial-of-service attacks. Frontal attacks exploit flaws in system code, configuration

errors, and operator errors—threats from outside the system [1]. In order to address these

operational issues, systems must have no exploitable flaws, constrain access to

information, and isolate damage from malicious software execution [1].

A developmental threat can be much more dangerous. A system is susceptible to

this threat during its development phase before the system becomes operational. This

means that intentional exploits or malicious code inserted into the system during

development could still potentially be in the system during the operational phase. An

example of a developmental threat is subversion. Subversion is a malicious attempt to

undermine system security policies and protections. Subversion manifests itself in the

form of artifices (seemingly useless or unnoticed snippets of code) placed in the system

anytime during the development lifecycle. A system containing artifices may have some

or all installed security controls bypassed.

The assurance requirements of the Common Criteria (CC) [3] were created to

address developmental threats. The CC defines assurance requirements for developing,

implementing, evaluating, and maintaining trustworthy systems. Vendors who develop

 8

systems to meet the standards specified in the CC can provide varying levels of assurance

to customers that the specification, implementation, and evaluation of the product were

conducted meticulously and in a standard manner. Unfortunately, it is not possible to

provide 100% assurance that no artifices exist in a system. However, the CC includes

evaluation assurance levels (EALs) that define a range of activities a vendor can employ

when developing a system, from those that result in a very low assurance product (EAL1)

to those that result in a very high assurance product (EAL7). Thus, insisting that

products are evaluated against the appropriate CC EALs provides a higher level of

confidence that assurance requirements are met than a product that has not complied with

CC EALs.

Trusted computing is an attempt to systematically minimize operational and

developmental threats. Because examples of high assurance development are not widely

available, the TCX project attempts to solve the operational and developmental issues

discussed above by creating an example of all elements of a high assurance system

development. The next section provides context for the TCX Least Privilege Separation

Kernel (LPSK).

2. Separation Kernel

In June 2007, the Information Assurance Directorate (IAD) of the National

Security Agency (NSA) published the “U.S. Government Protection Profile for

Separation Kernels in Environments Requiring High Robustness” (SKPP) in order to

define stringent requirements for high-assurance separation kernels [4]. Any separation

kernel that conforms to the SKPP will provide a high degree of assurance that the system

security policy is strictly enforced.

Separation kernels are different from typical security kernels that dynamically

conduct all of the security functions in a system. Based on an input configuration, a

separation kernel enforces an information flow policy by allocating the subjects and other

exported resources of a system to partitions [4]. By doing so, a separation kernel can

isolate subjects and other exported resources from one another and control the

information flows (if any) between subjects and other resources. Subjects are the

 9

individual active entities of the system [4]. Partitions are not active entities, but each

may contain in its set of resources zero or more subjects. Thus, subjects in one partition

are completely isolated from subjects in another partition. Isolation means that the

subjects in one partition cannot be seen or communicated to by subjects outside the

partition unless the information flow has been explicitly allowed. The separation kernel

itself is also both tamperproof and non-bypassable.

Figure 1 is a simple example of a separation kernel with three partitions, three

subjects, and six other exported resources. Each resource is bound to a single partition.

In this simple example, circles represent subjects, squares represent other exported

resources, and directed arrows represent allowed information flow. A double arrow

means that a subject can read and write to the resource. If an arrowhead points at a

subject, then the subject has the permission to read from the object. Likewise, if an

arrowhead points away from a subject, then the subject can write to the resource. Subject

3 of Partition B is permitted to read and write to Resource 6, but can only read Resource

8 of Partition C. An inter-partition information flow from one subject to another is

observed between Subject 2 and Subject 3. Subject 2 is allowed to write to Resource 6

and then Subject 3 may read the written data from Resource 6. Resources 7 and 9 show

the fine-grained control of the information flow because Subjects 1, 2, and 3 cannot read

from or write to them.

Figure 1. An example of the allocation of subjects and resources along with the
information flow in a separation kernel [4]

 10

The configuration vector specifies the partitioning of the system resources. In

addition, the configuration vector specifies the Partitioned Information Flow Policy

(PIFP), which is the allowed information flow between the partitions [4]. A

configuration vector is translated from a human-readable form to a machine-readable

format by the configuration function [4]. The policy can be expressed in terms of a

partition-to-partition flow policy as well as a more granular subject-resource policy.

Each configuration vector contains the appropriate information to initialize the system

into a secure state. Only one binary configuration vector from the set of configuration

vectors is selected to initialize the system. The next section describes the TCX

implementation of a separation kernel that complies with the SKPP.

3. The TCX LPSK

The TCX project expands on the functional requirements outlined in the SKPP

and implements a LPSK that is compliant with the SKPP. The LPSK provides hosted

applications a high-degree of assurance that the PIFP is strictly enforced. The LPSK

follows guidelines of the SKPP discussed in the previous section.

The PIFP for the LSPK is defined in the configuration data. Specifically, the

configuration data is the result of setting the platform to an initial secure state from

information contained in a binary configuration vector. Thus, a binary configuration

vector contains the binary information that specifies the initial secure state of the LPSK.

Figure 2 shows the steps necessary to initialize the LPSK to a secure state from the initial

creation of the human-readable configuration vector to the creation of the binary

configuration vector to the initialization of the LPSK to a secure state.

 11

Figure 2. Illustrates the lifecycle of the configuration vector from initial creation to the
initialization of the LPSK to a secure state

As shown in Figure 2, the initial configuration vector, which is human-readable,

is created offline by a trusted user. The configuration vector is transformed from a

human-readable format to a machine-readable binary format by the configuration vector

tool. The resulting vector is transported to the LPSK platform. The LPSK Boot Loader

is the first software to execute on the LPSK platform. The Boot Loader presents the

configuration vector set to an authorized user. The configuration vector set is a collection

of binary configuration vectors (only three are shown in Figure 2) that is presented to an

authorized user during initialization. The authorized user must select the desired binary

configuration vector from the configuration vector set. After the authorized user selects

the desired configuration vector, the Boot Loader loads and starts the LPSK Initializer.

The Initializer sets the LPSK platform to the initial secure state based on the data in the

binary configuration vector. Once this is complete, the LPSK platform is able to enforce

the loaded configuration in order to maintain a secure state. The next section discusses

the first steps of this process—the conversion of the human-readable configuration vector

into the binary configuration vector via the configuration vector tool application.

4. Configuration Vector Tool

The configuration vector tool is the primary focus of this research. As mentioned

in the previous section, the configuration vector contains the pertinent information used

 12

to initialize the LPSK platform to a secure state. The format of the configuration vector

when loaded into the LPSK platform is binary. A binary format is neither easily created

nor easily understood by users. Thus, a human-readable configuration vector is desirable

for human interaction. However, in order to convert a human-readable configuration

vector to a binary configuration vector, the human-readable configuration vector must

adhere to a precise format. Only a precise human-readable format will allow a binary

converter tool to faithfully convert the file to a binary format. This requires an authorized

user to be very meticulous when creating the human-readable configuration vector. In

general, users are not always proficient when it comes to completing these types of tasks.

To reduce the human errors that could occur when creating configuration vectors,

this research aims to take the initial steps to construct an interface that allows a trusted

user to create configuration vectors graphically. This graphical tool would allow the user

to create a new configuration vector, or read in an existing binary configuration vector,

and write out a binary configuration vector. This tool would also perform basic

consistency checking before the configuration, created at the interface, is exported to a

binary format. This ensures that every binary vector exported from the tool is in the

correct format and has no syntactic errors. Eventually, the tool should be able to further

check the created configuration for undesirable or unintended configurations.

Thus, this research intends to implement the configuration vector tool for the

TCX project. The focus of the research is to create a user-friendly configuration vector

tool that gathers the required data from a user and generates a correct binary

configuration vector file. A user-friendly environment assumes the need to create a GUI

application. The next section explores the graphical interface concepts relevant to the

creation of the initial configuration vector tool.

B. GRAPHICAL USER INTERFACES

GUIs have changed the way people use computers. Instead of having to

remember long sequences of strings, users can simply “point-and-click” their way to

accomplish the majority of tasks on today’s systems. GUIs attempt to abstract away the

complexities of dealing with the command line where a user must remember specific

 13

strings in order to accomplish tasks. Although there are many different tools to assist

users in constructing GUI applications, the underlying paradigm used to construct a well-

designed GUI application has not changed much in the last few decades [5]. The Model-

View-Controller (MVC) paradigm enables a developer to create a flexible and robust

application [5]. The following section explains the concepts behind the paradigm and the

next section discusses the Java implementation of the paradigm. The final part of this

section outlines the basic terminology for discussing GUIs.

1. Model-View-Controller Paradigm

Most GUIs designed today follow, or attempt to follow, the MVC design

paradigm. MVC is a simple and elegant approach to designing GUIs [5]. Smalltalk

developer Trygve Reenskaug originally conceived the MVC concept in 1979 at the Xerox

Palo Alto Research Center [5]. In 1979, GUI applications were rare and the concept of

how to design one was virtually nonexistent. MVC divides modeling the external world,

user input, and visual feedback into three distinct components: the model, the view, and

the controller [5].

The model component is concerned with the data of the application, the access to

that data, and the manipulation of that data. The model is essentially a software

instantiation of the real-world process [6]. The model maintains the data and responds to

requests to use the data.

The view component is concerned with managing and generating the GUI. The

view specifies exactly how the information from the model is displayed on the given

interface. It is important that the view presents the data in a consistent and uniform

fashion in order to increase usability and reduce confusion. The view may query the

model for data. However, the view cannot directly change the model data. Instead, the

view sends events to the controller component.

The controller component listens for input from the view (via a mouse click,

keyboard input, or an other event) and commands the model or view (or both) to perform

a specific action [5]. The actions performed by the model are usually related to changing

 14

the state of its data while the actions of the view usually prompt the view to change the

state of its visual representation of data [6].

Although separated, each component must maintain contact with the other

components in order function properly. Figure 3 shows the basic interaction between

each aspect of the MVC. In Figure 3, the dotted lines represent events or notifications

while the solid lines indicate specific method invocations. The solid line from the view

to the model indicates a query of the model’s data while the solid lines from the

controller represent actions sent to the model or view.

Figure 3. MVC interaction diagram [6]

Although the MVC paradigm is quite simple, its consequences are profound. An

application that follows MVC is inherently very flexible. MVC design allows for the re-

use of model components since the model and view are separate. This separation allows

developers to create multiple views that access the same data. Since the model contains

no complex GUI code, the model components are also much easier to maintain, debug,

and test. The application has the ability to support different interfaces as well as different

functionality by writing new view and controller code. A negative consequence to MVC

is the increase of design complexity. Increased complexity introduces not only extra

code in order to separate the model, view, and controller, but it also increases the time

necessary to develop and implement an application. However, the negative consequences

are minor relative to the advantages gained by following the MVC guidelines.

 15

2. Java and MVC

Java uses the Swing architecture for its GUI development. The Swing

architecture has its roots in MVC [7]. The design goals of the Swing project were to

implement GUI components completely in Java to enable cross-platform compatibility,

provide a single application programming interface (API) that supported multiple views,

enable model-driven programming, ensure components behaved well in development

tools (i.e., IDEs), and provide backward compatibility with the abstract window toolkit

(AWT) APIs [7].

The developers of Swing realized that the MVC design was the most appropriate

paradigm choice as it met the design goals stated above. However, while the MVC is

conceptually the best structure, the developers quickly discovered that a complete split

into the three components was impractical. A simple example using a Swing TextField

component illustrates this problem. A TextField is used to display existing data and to

change data. Since a TextField displays data, it must be a view component. However, it

should also have the ability to change data in the model. Hence, it must be a controller

component. This means that the TextField is sometimes a view component and

sometimes a controller component. A TextField easily belongs to both categories.

The developers realized that a tight relationship existed between the view and

controller components. Because of this relationship, writing a generic controller that had

no knowledge of specific view items was very difficult. To solve this problem, the

development team collapsed the view and controller components into a single user-

interface (UI), referred to as a delegate—shown in Figure 4 [7]. Collapsing the view and

controller components allows the components to efficiently communicate with one

another. The delegate component communicates with separate model component as a

single component.

 16

Figure 4. Java Swing MVC based architecture diagram [7]

Thus, Java Swing does not strictly follow the MVC paradigm. Instead, Swing is

MVC based. This is usually referred to as a separable model architecture [7]. Although

collapsing the view and controller into a single delegate may seem to present a problem

to developers wishing to embrace Swing for development purposes; the two collapsed

components (view and controller) of the delegate component may be treated somewhat

independently [7]. In other words, even though the delegate actually contains both the

view and controller simultaneously, the developer can access the view and controller

functions of the delegate independently (in most cases).

3. GUI Terminology

This section briefly introduces terminology used to describe GUIs. Specifically,

this section provides the basic terminology used throughout this thesis to describe the

GUI elements of the configuration vector tool. The main element of a GUI is the

window. A window is referred to as a frame in Java, but for the purposes of this thesis, a

window (Java frame) will be referred to as a window. A window is the element that

contains all other elements of a GUI (i.e., a window is what is seen on a display). Inside

a window, many different types of elements may exist. For this research, the primary

elements are panels, tables, labels, menus, buttons, combo boxes, spinners, and text

fields. Panels are a way of grouping several elements together and are usually positioned

 17

directly on the window. Tables are used to organize data in a tabular format and can be

either read-only or editable. Labels are non-editable fields that provide the information

as to what type of data is required for a specific field. Menus and buttons provide a way

to execute events or actions for an application (such as opening or saving a file). Combo

boxes and spinners help restrict the input a user enters into the application. The final

element of importance to this thesis is a text field. A text field may be represented in a

variety of ways and can be read-only or editable. Editable text fields allow users to enter

data into the text field just as an editable table allows users to enter data into its cells.

There are many other types of GUI elements that were not discussed in this section.

Figure 5 shows the basic GUI elements referenced by this thesis. The elements discussed

in this section are referenced throughout Chapter III and Chapter IV.

Figure 5. GUI elements referenced in this thesis

 18

C. SUMMARY

This chapter presented a brief overview of the TCX objectives, a discussion of

trusted computing, and then a discussion of the TCX LPSK and, in particular, of the

configuration vector. The chapter then presented the MVC design paradigm for GUI

development and the Java implementation of the MVC paradigm: Swing. The chapter

ended by introducing basic GUI terminology. The next chapter presents the design

considerations for creating the GUI configuration vector tool.

 19

III. DESIGN

LPSK developers and potential users of the LPSK need a tool that will help them

create a binary configuration vector. Here we examine the design process for creating the

configuration vector tool that creates the vector that specifies the initial secure state of the

LPSK. The first section discusses the selection of the most appropriate programming

language and associated tools necessary to design and implement the tool. The

subsequent six sections discuss the thought-process involved in reaching an initial design.

These sections begin with the breakdown of the configuration vector structure, followed

by the emergence of the MVC model and basic design element ideas, and conclude with a

final conceptual design sketch of the configuration vector tool.

A. OVERVIEW OF DEVELOPMENT TOOLS

With many different programming languages available, selecting the most

appropriate language to implement the configuration vector tool was essential. Many of

the most common programming languages provide GUI toolkits or Integrated

Development Environment (IDE) GUI builders. These toolkits or IDEs help both

professional and inexperienced developers quickly create professional-style applications.

For the development of the configuration vector tool, the following languages were

examined: Microsoft .NET [8], Apple Cocoa (Objective-C) [9], wxPython [10], and Java

[11]. Since every language has its pros and cons, a selection process was devised in order

to choose the most appropriate language for the configuration vector tool. The next

section outlines the selection criteria and considerations.

1. Tool Selection Process

Six criteria were used to select the development language: MVC compliance,

cross platform compatibility, online documentation, online tutorials and examples,

available IDE GUI builders, and other developer considerations. First, each potential

language was examined to see if it provided a framework for the MVC design paradigm.

The next criterion examined each language for its ability to easily run on several standard

operating systems with no modifications to either the operating system or the application.

 20

The third and fourth criteria ensured that the language selected had sufficient online

documentation, tutorials, and examples in order to guide and support the developer. The

fifth criterion looked at the available IDEs with an integrated GUI builder in order to

assist the developer in graphical design and implementation. The final criterion is the

developer’s experience and familiarity with the language. Table 1 summarizes the

criteria used to select the language.

Criteria Description
MVC Compliance Does the language and associated IDE provide the library and tools

necessary to easily create a MVC interface?
Cross Platform Compatibility Can final application run on several standard operating systems

with no modifications to either the application or the operating
system?

Online Documentation Is the online documentation sufficient and easily understood by an
inexperienced developer?

Online Tutorials and Examples Are online tutorials and examples readily available to the developer
through both official and third party Web sites?

IDE GUI Builders Do the IDEs available for the specific language include a
comprehensive and refined GUI builder?

Developer Considerations Is the developer familiar with this language?

Table 1. Candidate development language criteria

Table 2 shows a basic comparison of the candidate languages using the criteria

described above. Based on the developer’s limited experience and knowledge of

Microsoft .NET and Apple Cocoa (Objective-C), these programming languages were

immediately removed from the selection process. However, examination of both the

Microsoft and Apple tools provided critical insights in design style and implementation

methods that were used in future sections. The subsequent paragraphs detail the

comparison of the two remaining languages: wxPython and Java Swing.

 21

Table 2. Candidate development languages comparison

 22

As discussed in Chapter II, Section B, the MVC design paradigm is an important

consideration when selecting a design tool. Similar to the Java Swing discussion in

Chapter II, wxPython combines the view and controller component into a single delegate.

This allows a wxPython application to have the same flexibility as an application

developed with Java Swing. Thus, both wxPython and Java comply with the MVC

paradigm by implementing a modified MVC model.

Both wxPython and Java are also excellent candidates when cross-platform

compatibility is an issue. Each is able to run natively on all of the major operating

systems today (i.e., Windows, Macintosh, and Linux). wxPython is a wrapper for the

wxWidgets cross-platform GUI library [12]. wxPython leverages the underlying

operating system for graphical interface creation. This means that a wxPython

application running on a Macintosh will use the Macintosh Aqua interface elements and

appear to be a native Macintosh application. Likewise, the same wxPython application

running on a Windows platform will use the Windows interface elements and appear to

be a native Windows application. Java Swing, on the other hand, does not rely on a

native operating system GUI component. This enables Java Swing to render its own

components as necessary. Thus, the look and feel of Java Swing is completely platform

independent; or stated differently, the GUI components rendered by Java Swing have the

same appearance on all platforms.

The online documentation, tutorials, and available examples are a critical

consideration for the selection of the design tool. The wxPython Web site [10] and

wxPyWiki [13] have excellent resource and examples to help developers learn wxPython.

Java Swing information is found at the Sun Microsystems Developer Network (SMDN)

Web site [14]. On the SMDN site, there are countless tutorials and examples to guide

developers in creating basic graphical applications. Although the wxPython

documentation and support available online is sufficient, Java has much more

information available from the official Java Web site as well as third party examples

across the Internet. The information provided on the official Java Web site is also more

refined than that found on the wxPython Web site. For an inexperienced developer, Java

Swing provides more guidance.

 23

The final major consideration is the available GUI builder development

applications. wxPython provides a development application called PyCrust [10] as well

as many examples of GUI components (PyCrust and examples are included with the

standard wxPython installation) [10]. Unfortunately, PyCrust does not provide a

graphical GUI creation tool. The example components, although extensive, do not help

the developer in the placement of each component. Two other Python development

applications are worth mentioning: wxGlade [15] and Boa Constructor [16]. wxGlade is

a pure GUI designer that generates only GUI code [15]. Thus, wxGlade is not a full IDE.

Developers looking for the traditional IDE support (i.e., inline compiling) must find a

different tool. Boa Constructor fills this gap and is a complete Python IDE and wxPython

GUI builder [16]. Boa Constructor provides a Python developer with visual creation of

GUI components (drag and drop).

The Java Swing IDE is NetBeans. NetBeans is a refined IDE that features a

Swing GUI Builder. The GUI builder allows the developer to create graphical

components (e.g. buttons, tables, labels, etc.) by dragging and positioning the

components on a canvas. This allows the developer to quickly create professional

looking applications without spending the majority of time worrying about the “look and

feel” of the interface. Although Boa Constructor is a decent GUI builder for Python,

NetBeans for Java is more refined and intuitive.

Other considerations taken into account during the selection process were the

developer’s knowledge and experience of each language as well as the ease of use of

each of the development applications. The developer’s experience developing GUI

applications was moderate and thus weighed heavily on the language selection.

wxPython was initially chosen due to its ease of use in creating backend code for the

interface and for the Boa Constructor IDE. However, as will be discussed in Chapter IV,

wxPython was later dropped in favor of Java Swing and the NetBeans IDE.

2. Java Swing and NetBeans

Java Swing was selected as the development tool for the configuration vector tool.

Specifically, the Sun Microsystems Java Development Kit (JDK) SE 6 Update 16 for

 24

Mac OS 10.6 was selected as the development platform. Java was chosen for its

extensive libraries, excellent online support and tutorials, cross-platform compatibility,

and its Swing GUI capabilities. As a result of its portability, any system supporting the

Java Runtime Environment should be able to compile and run the configuration vector

tool.

While several of the Java files for the model component of this thesis were written

using a standard text editor, the view and controller components (i.e., the GUI) took

advantage of the NetBeans IDE version 6.7 [17]. The NetBeans IDE is a free open-

source IDE that runs on Windows, Linux, Mac OS X, and Solaris. The NetBeans IDE

features a Swing GUI Builder (formerly Project Matisse) that allows developers to create

professional looking applications. Leveraging Java as the development environment, the

next section outlines the configuration vector structure. Understanding this structure is

critical to implementing the configuration vector tool.

B. CONFIGURATION VECTOR FORMAT

As discussed in the background section, the LPSK configuration vector is the

crucial component for initializing the LPSK. In order to create a GUI application that

creates a binary vector, it is important to examine the format of the vector. By examining

the format of the vector, it is possible to find natural divisions based upon the structure

and semantics of the configuration vector that hint at possible GUI designs. The

remainder of this section will examine the vector structure and attempt to show the

natural divisions in the structure that were used to create a GUI.

1. Basics

The binary configuration vector is defined in a C header file—lpsk.h (see

Appendix). The header file outlines the complete structure of the configuration vector.

The first portion of the header file is the definitions section. This section defines the

constants used throughout the file. After the definitions section, the header file contains

many different C structs. Struct is short for structure, or user-defined data type. A struct

in the C programming language is like a class in Java but without methods. It is used to

 25

logically bundle or package related data. A struct aggregates many different data types

into a single user-defined data type. The C programming language does not limit the size

or type of any of the objects contained in the struct. This means that a struct can package

other structs.

Another important element of the header file is arrays. Arrays in the C

programming language are variables that store multiple items of the same data type. A

one-dimensional array is ordered via the index of each item in the array. Individual items

contained in an array can be read or written by referencing the specific index of the array.

For example:

array_demo[] = {a, b, c};

array_demo[1] = b;

A two-dimensional array is an array inside of an array—a matrix. Thus, a two-

dimensional array contains rows and columns of data. Similar to one-dimensional arrays,

values within two-dimensional arrays can be read or written by referencing the specific

index of the array. For example:

array_demo[][] = { {a, b, c}, {d, e, f} };

array_demo[1][1] = e;

For the purpose of this work, structs may contain any declared or standard data

type, such as integers and floating point variables. With this basic knowledge of the

LPSK header file, the next section gives a detailed breakdown of the configuration vector

structure into its basic components.

2. Structure Overview

The configuration vector is specifically located in the vector_struct struct of

the header file. The vector_struct struct (see Figure 6) contains the format

version, structure magic number, the number of partitions, the Trusted Path Application

(TPA) partition identifier, the number of eventcounts, the number of sequencers, a

partition-to-partition permissions two-dimensional array, and six additional structures.

The six structures are the partition definition struct, data segment struct, memory segment

 26

struct, eventcount struct, sequencer struct, and the subject-resource permissions struct.

The exact names of the structures are listed below:

• partition_struct partitions[]

• datafile_struct datafile[]

• memory_struct memory[]

• synchronization_struct eventcounts[]

• synchronization_struct sequencers[]

• subj_res_perm_struct subj_perm[]

Figure 6. Configuration vector excerpt from lpsk.h

Several of these six structures contain additional structures embedded within

them. Thus, the larger structure is composed of smaller building blocks, which enhances

its analyzability and decreases its ultimate complexity. Figure 7 captures the top-level

structure (i.e., the configuration vector) from the lpsk.h file.

As seen in Figure 7, vector_struct is the base struct containing all the other

structs. Each sub-structure is a one-dimensional array of structs. This means that one

sub-structure may have multiple structs contained within it. Each sub-structure array

uses the constant values defined in the definitions section of the header file to set the

 27

maximum number of structs for the given sub-struct array. For simplicity, the remainder

of this section will drop the constants from the discussion and only refer to the array of

structs as a struct.

From Figure 7, partition_struct holds process_struct and the

process struct holds the subject_struct. This figure also shows that the

eventcounts struct and sequencers struct are simply represented by a synchronization

struct. By looking at this code, one can see that the natural breaks in the overall vector

structure are the structs. Following this logic, a Java class can represent each struct.

Another important piece of the vector structure are the perms[] one-

dimensional arrays (see Appendix) and the part_perm[][] two-dimensional array.

These are important because they required special treatment when designing the GUI.

Fortunately, the perms[] arrays are very similar throughout the lspk.h file—only

differing with regard to the length of each array. This means that a single Java class may

be used to represent the arrays. For the two-dimensional array, a separate Java class was

sufficient to handle it.

The final pieces of the puzzle are the definitions of the constants that define the

number of elements of the various structures (i.e., from Figure 6, MAX_PARTITIONS,

MAX_DSEGS, etc.). These are defined in the definitions portion of the lpsk.h file (see

Appendix) and are omitted in Figure 7 for simplicity. A single Java class easily captures

these definitions.

 28

Figure 7. Configuration vector structure diagram based on the lpsk.h

This section showed the vector structure defined in the lpsk.h file. The next

section expands upon this structure as it relates to the MVC paradigm.

 29

3. MVC Model Component

By understanding the structure of the specific structs in the lpsk.h file, the

model component of the MVC paradigm emerges. Using Figure 7 as a guide, the

structures of the lpsk.h file can be translated into individual Java classes. These Java

classes represent the model component of the MVC. Each of these Java classes is

discussed in detail later during the discussion of the configuration vector tool

implementation.

At this point, it is worth noting the importance of the model component of a GUI

application. A robust model capable of containing data gathered by a GUI is critical to

application success. In addition, if the model component is created correctly, then any

GUI could be used to capture the data from the user. This allows any future changes to

the user interface, including a complete overhaul of it, to be accomplished relatively

easily without affecting the underlying model.

This section outlined basic knowledge for understanding the lpsk.h file and

then showed the logical breakdown of the individual components of the configuration

vector. Using the logical breakdown also led to the emergence of the model component

described by the MVC paradigm. The next section also will use Figure 7 to discuss the

primary graphical design element choice, which provides the foundation for the graphical

aspect of the configuration vector tool: the view/controller component.

C. THE PRIMARY GRAPHICAL DESIGN ELEMENT

Not only did Figure 7 help with the design of the underlying model component of

the GUI, but it also provided a conceptual breakdown of the data for the view component.

Since the structs naturally divide the vector_struct, a possible graphical

representation of the data is a table. In this case, a table can graphically represent the

data from each structure. Since the vector_struct incorporates six structs, the main

application window was designed to point to at least six different tables. Each of these

tables contains the attributes necessary to create each struct. For instance, an eventcounts

table must contain at least the name, privilege level, and permissions attributes

corresponding to the attributes of the synchronization struct. Figure 8 shows the

 30

transformation of the vector_struct attributes to the table column headers. The next

section shows the modifications to this table and the incorporation of all elements from

the vector_struct defined in the lpsk.h file into the graphical representation.

Figure 8. Illustrates the transformation of the vector_struct attributes to table
column headers

D. DESIGN REFINEMENT

This section refines the conceptual graphic design to incorporate all attributes

from the vector_struct and its sub-structures. The majority of this section will use

graphics to illustrate the thought process behind the refinements. In the previous section,

Figure 8 showed the initial transformation of the vector_struct sub-structs into the

 31

individual table column headers. The next step incorporates the main vector attributes

into this graphical concept.

The vector_struct attributes contain the tables described in Figure 8 and

seven additional attributes (i.e., version, magic, tpa_partition,

num_partitions, num_eventcounts, num_sequencers, and

part_perm[][]). Since the additional attributes are applicable for the entire vector

struct, all of these attributes were added to a window panel. The entire

vector_struct became the main application window. The tables from Figure 8 then

became a tabbed panel within a separate window panel. Figure 9 depicts this evolution of

the conceptual design. In Figure 9, the table column headers are placed inside a main

application window. Thus, the main application window represents the top-level

structure (i.e., the vector_struct). The table column headers represent the sub-

structures of the vector_struct and were collapsed into a tabbed panel with one

table per panel. The individual attributes of the vector_struct were incorporated

into the vector attributes panel of the main application window.

 32

Figure 9. Illustration depicting the incorporation of the tables and vector_struct
attributes into a main application window

The next step involved adding the sub-structs of the partition_struct to

this design (i.e., the process_struct and the subject_struct). Since both the

process_struct and subject_struct have features similar to those of other

structs previously described, a logical approach was to treat each of these as a table

within its parent table. In other words, the partition table contains a process table and the

process table contains a subject table. Figure 10 shows the addition of an extra column to

the partition table to account for the linkage to the process table. Similarly, the process

table contains an additional table column not listed in its struct for the subject table.

Figure 10 illustrates the nesting of one table inside a parent table. Specifically, the

process table was linked in its parent (i.e., partition table) and the subject table was linked

in its parent (i.e., process table).

 33

Figure 10. Illustration of the nesting child tables within parent tables

Unfortunately, although the design seems to capture the complete

vector_struct, there are several instances where more refinement was necessary.

First, placing the part_perm[][] two-dimensional array attribute of the

vector_struct in the vector attributes panel with other attributes of completely

different data types seemed awkward and inconsistent. A more elegant solution was

necessary. In order to refine the part_perm[][] attribute, it was necessary to remove

it from the vector attributes panel. Since the part_perm[][] attribute contains

partition-to-partition permissions for each partition, it made sense to add it as an

additional table within the tabbed table panel of the main application window. Figure 11

depicts this design decision by showing similar data type objects in the vector attributes

panel and moving the part_perm[][] two-dimensional array to be within the tabbed

table panel of the main application window.

 34

Figure 11. A refinement of the initial window design showing the addition of the
partition-to-partition table

Second, the subject and process embedded tables needed to be refined to better

capture the required data. Thus, the attributes of the process_struct and

subject_struct, were combined into a single entity. Since the process_struct

contains little information besides the associated subject table, the table was transformed

into a process window. This new process window captures the necessary data similar to

the way the main application captures its data—a window panel to capture the process

attributes (i.e., identifier and number of subjects) in a processes attribute panel and

provides a table to capture the specific subject information. Figure 12 describes this

transformation.

 35

Figure 12. A refinement of the process and subject tables. The two tables are merged
into one window

Finally, the permissions column of all of the main tables described in Figure 8 is

repeated in several tables. This repetition among the tables requires special

consideration. In order to correctly capture the required data, a common interface across

all tables with the permissions column must be created. Thus, this refinement to the

design involved creating a common permissions window interface for each of the

perms[] attributes of the vector_struct sub-structures. In this case, each of the

columns of each table is linked to a new window that contains a sub-table—a permissions

table. Figure 13 shows the relationship from the table column headers to the new

permissions table. It is important to note that each permissions column associated with

the various tables receives a new window upon request. Thus, a permissions window

originating from the evencounts table is not the same as a window originating from the

sequencers table (this is true for all instances of permissions tables). Only the visual

representation of this new window is common across all tables (i.e., a common interface

with different values for all tables).

 36

Figure 13. All permissions columns within each table is represented by a common
interface window

Figure 14 shows the complete view of the tables and their associated attributes.

One minor refinement completed the design. Since each row of a table represents an

instance of the table’s struct (i.e., a single row of a table represents a single element

contained in its struct array), it was useful to add the appropriate label for each table that

signifies what each row for each table represents. For instance, a partition number

column was added to the partition table. Similarly, a datafile number column was added

to the datafile table. This is consistent across all tables except the partition-to-partition

permissions table, subjects table, and permissions table. The partition-to-partition

permissions table shows the inter-partition permissions. Figure 14 illustrates the addition

of the identification label columns (discussed above) to each table. The figure also shows

the hierarchical relationship of the tables. Since all of the tables shown in Figure 14 are

subordinates of the vector_struct, the tables with solid dots are considered

 37

intermediate tables and the two tables at the end of arrows are considered leaf tables. The

object number of the permissions leaf table will change based on the intermediate table

from which it originated. In other words, a permissions leaf table originating from the

datafile table will show the datafile number in place of the object number. Finally, the

subjects table embedded in the process table has a privilege level added to distinguish

between individual subjects within a particular process.

Figure 14. Final table column headers as defined by the lpsk.h file

The final figure in this section, Figure 15, shows the complete design concept.

The main application window contains the vector attributes panel and a tabbed tables

panel. The vector attributes panel contains all of the attributes of the vector_struct

except the sub-structures. The tabbed tables panel contains the sub-structures of the

vector_struct. There are two other windows depicted in this figure that appear

upon selecting the appropriate column in the respective main tables. A process window

appears when the process column is selected in the partition table. The appropriate

permissions window of the originating table appears when the permissions column is

selected.

 38

The figures in this section showed the refinement of the primary design element

(i.e., the table) as well as the overall design concept for the configuration vector tool

GUI. Once defined, it is necessary to determine the requirements for the configuration

vector tool. The next section discusses the specific requirements for the configuration

vector tool application.

Figure 15. A complete design concept of the vector_struct

E. CONFIGURATION VECTOR TOOL REQUIREMENTS

As discussed in Chapter II, a configuration vector exists in two formats: a human-

readable format or a binary format. The configuration vector tool is an application that

creates valid configuration vectors (both human-readable and binary) and converts a

configuration vector from one of these formats to the other. This is the overarching

requirement for this research. The remainder of this section outlines the basic

requirements for the configuration vector tool.

1. Basic Requirements

The configuration vector tool must be an offline software application that is able

to execute on a standard operating system. The tool must have the ability to take as an

 39

input a human-readable configuration vector and produce the equivalent binary

configuration vector. The tool must also have the ability to take as an input a binary

configuration vector and produce the equivalent human-readable configuration vector.

The user shall have the ability to select the output file name and destination for both the

generated file formats. All generated files, whether binary or human-readable, must be

syntactically correct. The list below shows these basic requirements.

• Remove underlying complexities associated with configuration vector
creation

• Offline application (i.e., a stand-alone application that requires no
additional LPSK software)

• Executes on a standard operating system

• Reads syntactically correct binary configuration vector file

• Reads syntactically correct human-readable configuration vector file

• Writes a syntactically and semantically correct binary configuration vector
file

• Writes a syntactically and semantically correct human-readable
configuration vector file or only a syntactically correct human-readable
configuration vector file

Before continuing, it is useful to define syntactically correct. A syntactically

correct file conforms to the rules and structure defined for the configuration vector file.

A syntactically correct configuration vector may fail a semantic (variable bounds case

only) check. If a file passes the syntax check but fails a bounds check, then the latter

check is considered a semantic failure. Thus, failing a semantic check means a variable

was outside the defined upper or lower limit. References to a semantic check refer only

to the bounds or limits of the variables defined in the configuration vector file.

Based on the requirements stated above and the definitions of both syntactic and

semantic correctness, Figure 16 shows the configuration vector tool state transition

diagram. The input and output configuration vectors shown in the figure can either be in

binary or human-readable form. Table 3 represents the possible output configuration

vector file types given a specific input configuration vector file type. A human-readable

 40

file read into the tool can write out a binary or human-readable file. A binary file read

into the tool can write out a binary or human-readable file. The none input in the table

refers to the creation of a new file from the tool.

Figure 16. Configuration vector tool state transition diagram

Configuration Vectors
Read In (Input) Write Out (Output)
Human-readable Binary
Human-readable Human-readable

Binary Binary
Binary Human-readable

None (new file) Binary
None (new file) Human-readable

Table 3. The possible output file type given a specific input file type

A configuration vector input file read into the tool must first enter the syntax

checker state. The syntax checker ensures that the input file conforms to the

configuration vector file standard. If the input file fails this check, the syntax checker

reports an error to the user. If the input file passes, it is sent to the GUI editor state. The

GUI editor state allows the user to make changes to the vector file. Upon completion of

changes (if any), the user has two options: save or export the vector file. If the user

chooses to save the vector file, it is written to a human-readable file without applying a

semantic check (giving users the flexibility of saving unfinished vectors that are probably

not ready for any verification). If the user chooses to export the vector file, the tool

 41

progresses to the semantic checker which checks the bounds of the variables contained in

the vector. If the file fails in this state, the semantic checker reports an error to the user

and sends the file back to the GUI editor state. If the file passes the semantic checker,

then a syntactically correct and semantically correct configuration vector file may be

written to disk. In both cases, saving or exporting, the editor prevents writing a vector

file with incorrect syntax to disk. Thus, it is not necessary to check for syntactic

correctness during the output phase.

The next section outlines the specific details of a syntactically correct

configuration vector file. The section also outlines the semantic tests for each of the

objects contained within a configuration vector file.

2. Detailed Requirements

The detailed requirements for the configuration vector tool are described in this

section. This section mostly contains lists of tables and values that outline the upper and

lower bounds of all variables currently defined in the lpsk.h file. The first table of this

section, Table 4, shows the description, name, and value of the constants defined in the

lpsk.h definitions section. These values may change in the future and are listed only

as a reference for the remainder of the section. Thus, the configuration vector references

the constant name rather than the value.

Maximum Constant Values
Description Name Value

Maximum length of description string MAX_DESC 32
Maximum length of exported object name MAX_NAME 32

Number of privilege levels supported by the CPU NUM_PLS 4
Maximum number of datafile segments MAX_DSEGS 64
Maximum number of memory segments MAX_MSEGS 32

Maximum path length for file names MAX_PATH 64
Maximum number of partitions MAX_PARTITIONS 8

Maximum number of processes (per partition) MAX_PROCESSES 1
Maximum number of subjects (per process) MAX_SUBJECTS 24†

Maximum number of event counts
(synchronization struct constant) MAX_EVENTCOUNTS 32

Maximum number of sequencers
(synchronization struct constant) MAX_SEQUENCERS 32

 † (MAX_PARTITIONS * MAX_PROCESSES * (NUM_PLS – 1))

Table 4. Constant values defined by the lpsk.h file

 42

The second set of requirements, shown in Table 5, is simply a mapping table that

shows how the permissions are mapped from the human-readable format to the binary

format. The permission mapping for all permissions scattered throughout the structs

reference this table.

Permissions

Description Human-readable
format

Binary
format

No Access NA 0
Read only

Read/await eventcount RO 1

Read and write
Signal subject

Read/await/advance eventcount
Ticket sequencer

RW 2

Signal subject
Advance eventcount WO 3

Table 5. Mapping of permissions from the human-readable format to the binary format

The third set of requirements is shown by the structs bound requirements table,

Table 6. This table is a set of tables that outlines the upper and lower bounds for each

struct of the lpsk.h. The table is broken into the eight structs that make up the

vector_struct.

Structs Bounds Requirements
vector_struct

Description Name Type Bounds
The format version version unsigned int ≥ 0

The structure magic # magic unsigned int N/A (read-only)
The # of partitions num_partitions unsigned int (0, MAX_PARTITIONS]
The TPA partition tpa_partition int [0, MAX_PARTITIONS)

The # of eventcounts num_eventcounts unsigned int [0, MAX_EVENTCOUNTS)
The # of sequencers num_sequencers unsigned int [0, MAX_SEQUENCERS)

Partitions structs partitions partition_struct[] [0, MAX_PARTITIONS)
Datafile structs datafile datafile_struct[] [0, MAX_DSEGS)
Memory structs memory memory_struct[] [0, MAX_MSEGS)

Eventcounts structs eventcounts synchronization_struct[] [0, MAX_EVENTCOUNTS)
Sequencers structs sequencers synchronization_struct[] [0, MAX_SEQUENCERS)

Partition to partition
permissions two-
dimensional array

part_perm unsigned int[][] [0, MAX_PARTITIONS)
[0, MAX_PARTITIONS)

Subject resource
permissions subj_perm subj_res_perm_struct[]

[0, MAX_SUBJECTS)

partition_struct

Description Name Type Bounds

 43

Structs Bounds Requirements
Description of the partition description char[] [0, MAX_DESC)

Partition identifier identifier unsigned int ≥ 0
Fixed scheduling time

sliced time_slice unsigned int [0, 100]

Maximum memory a
partition can use max_memory unsigned int > 0†

Active or passive partition active boolean Active = TRUE
Passive = FALSE

Number of processes in the
partition num_processes unsigned int [0, MAX_PROCESSES]

Process structs processes process_struct[] [0, MAX_PROCESSES]

datafile_struct
Description Name Type Bounds

Partition to load in partition unsigned int [0, MAX_PARTITIONS]
Datafile identifier identifier unsigned int ≥ 0

Privilege levels to load in pl unsigned int [0, NUM_PLS)
Location of the datafile on

the disk path char[] [0, MAX_PATH)

Permissions for each
partition perms unsigned int[] [0, MAX_PARTITIONS)

memory_struct

Description Name Type Bounds
Partition to load in partition unsigned int [0, MAX_PARTITIONS)
Datafile identifier identifier unsigned int ≥ 0

Privilege level to allocate
memory segment in pl unsigned int [0, NUM_PLS)

Size of the requested
memory segment size unsigned int > 0†

Permissions for each
partition perms unsigned int[] [0, MAX_PARTITIONS)

synchronization_struct

(eventcounts and sequencers)
Description Name Type Bounds

Name of object name char[] [0, MAX_NAME)
Privilege level of object pl unsigned int [0, NUM_PLS)

Permissions for each
partition perms unsigned int[] [0, MAX_PARTITIONS)

subj_res_perm_struct
Description Name Type Bounds

Other subjects subj_perm unsigned int[] [0, MAX_SUBECTS)
Data segments dseg_perm unsigned int[] [0, MAX_DSEGS)

Memory segments mseg_perm unsigned int[] [0, MAX_MSEGS)
Eventcounts evct_perm unsigned int[] [0, MAX_EVENTCOUNTS)
Sequencers seq_perm unsigned int[] [0, MAX_SEQUENCERS)

 44

Structs Bounds Requirements

process_struct
Description Name Type Bounds

Process identifier identifier unsigned int ≥ 0
Number of subjects in the

process num_subjects unsigned int [0, NUM_PLS]

Subject structs definition code subject_struct[] [0, NUM_PLS)

subject_struct
Description Name Type Bounds

Location of executable file exe_path char[] [0, MAX_PATH)
Location of gate

information gate_path char[] [0, MAX_PATH)
† Limited by physical memory of the system

Table 6. Upper and lower bounds for all objects contained within every struct of the
vector_struct

The final set of requirements for the configuration vector tool is captured in Table

7. The requirements in this table show the dependencies of some of the objects contained

in the configuration vector. The table also clarifies some requirements from the previous

table. The next section outlines the informative message reported to the user upon

reaching an error state.

 45

 Additional Requirements
Applies to Name Requirement

identifier All identifiers are greater than zero and unique relative to
a respective struct.

Pl Always have the values of 0, 1, 2, or 3 All Structs

perms Binary values always 0, 1, 2, or 3; corresponding to the
human-readable values of NA, RO, RW, WO respectively
At least one partition in the set of partitions must be active
All active partitions must have must have 1 process
A passive (inactive) partition cannot have any processes
(and thus no subjects)

active

A passive (inactive) partition must have a time slice of 0
Individual fields must be greater than or equal to 0 and
less than or equal to 100 time_slice The total of all time slices across the partition set must
sum to 100

Partition Struct

max_memory Must be greater than 0
Datafile Struct partition Must reference a defined partition
Memory Struct partition Must reference a defined partition

Sequencer Struct perms Can only be NA or RW (this supersedes the perms
requirement stated above)

exe_path

PL0 must contain the path to the LPSK kernel.
Unfortunately, there is currently no way to verify this
requirement. Thus, the exe_path is only checked to ensure
that the path is within the size constraints for a path. Subject Struct

Gate_path
PL3 must be empty. The gate_path is also checked to
ensure that the path is within the size constraints for a
path.

Process Struct num_subjects
Valid subject_struct exe_path is a subject. Thus, the
minimum number of subjects is always 1 (the PL0
subject) and the maximum is 4.

Vector Attributes tpa_partition The tpa_partition must be an active partition as well as a
defined partition.

Table 7. Dependency relationships of configuration vector fields

3. Error Message Requirements

Since the configuration vector tool must ensure that it generates a syntactically

correct and semantically correct output file, informative error messages are necessary

when the user provides invalid values. The first error message that shall be reported to

the user occurs when reading an invalid (syntactically incorrect) input file (see Figure

16). Since this error is syntactic in nature, the tool should simply return an error stating

the input file is syntactically incorrect and the line number of the first error encountered

 46

by the tool. The tool will report this error to the user as a popup window dialog. After

the user accepts this error message, the tool will load a blank vector and display the main

window.

The next error that could occur is a semantic (out of bounds) error. Two specific

instances of this type of error require explanation. The first type of error occurs when the

user attempts to open a syntactically correct, but semantically, incorrect input file. In this

case, the tool will allow the input file to be loaded into the GUI editor with a warning

dialog pointing out the error(s). This will allow the user to edit this input file. After the

user finishes an editing session, the user has two choices: save or export the vector file.

If the user chooses to save the vector, a human-readable file is written to disk with only

basic error checking (i.e., the bounds of the fields are checked but the dependency of one

field to another are not checked). Saving a vector file allows the user to skip complicated

error checking and keep vector files that still require work. However, if the user chooses

to export to a binary format, the tool must check the values before writing out a

syntactically and semantically correct file. If the file still has semantic errors, the tool

will report a semantic error message and the specific item in the vector that failed the

check and return to the editor.

The second type of error is similar to the first except the user does not attempt to

read-in an input file. If a user creates a new vector, the new vector cannot be written out

to disk as a binary output file until it is error free. All steps for this case are the same as

the first case.

This section outlined the basic requirements as well as detailed requirements for

each individual struct. It also provided a generic state transition diagram showing the

progression of an input configuration vector file through the configuration vector tool to

the final output configuration vector file. Finally, the section outlined the error messages

that should be reported to the user if the configuration vector is syntactically or

semantically incorrect. The next section discusses the feature set of the configuration

vector GUI that meets these requirements.

 47

F. CONFIGURATION VECTOR TOOL FEATURE SET

Feature cascade is a term used in the design of software applications where a

simple application can quickly become complex due to the addition of many features that

are not relevant to the original intent of the program [18]. The addition of features not

only increases the overall complexity of an application, it also tends to negatively affect

the application performance and make it more difficult to use. Applications with many

features are not necessarily the best applications. Applications with the necessary,

sufficient, and appropriate features to meet the original intent and requirements usually

are the most usable [18]. In order to avoid a feature cascade, this section outlines two

different feature sets: a minimum feature set and a feature set that users expect. The final

section outlines graphical interface standards that should be applied to the GUI

applications in order to increase ease of use [18].

1. Minimum Feature Set

A minimum feature set is the set of features necessary for the application to

comply with an application’s basic requirements. These features are required in order for

the application to function as expected, yet they do not include features that are intended

to increase usability (i.e., features users may expect). Since the configuration vector tool

is an attempt to abstract away complexities, the first feature that meets the requirements

is the main GUI application window. A GUI application ensures that a user does not

need to know the syntactical structure of the underlying configuration vector file in order

to create a syntactically correct file. Since the GUI portion of the application

encompasses both the view and controller components, the GUI code incorporates the

code for syntax and semantic error checking. The previous section described the main

requirements for the configuration vector. Table 8 lists the minimum requirements for

the application and the features of the application that meet these needs.

 48

Requirement Feature
Simplify configuration vector

creation
GUI

Offline application that runs on
standard operating systems Java application

Read in configuration vector file
(syntactically correct only)

Open dialog from the File menu of the application. A message
is reported to the user if the input file is syntactically incorrect.
Save dialog from the File menu of the application. Allows the
saving of a semantically incorrect file to a human-readable
form only.
Save As dialog from the File menu of the application (allows a
copy of the vector to be saved). Allows the saving of a
semantically incorrect file to a human-readable form only.

Write out configuration vector file

Export dialog allows the user to write out a syntactically correct
and semantically correct binary configuration vector file only.
The syntax error check for an input file is accomplished
immediately after attempting to open a file.

Error checks The semantic error check is accomplished when the user
attempts to export the current vector file. This check is also
checked when the user presses the Check button.

Table 8. Minimum configuration vector tool features

2. Features Users Expect

Users expect features that increase the usability of an application. These features

vary from application to application but include items that most users normally take for

granted. A generic example is the ability to cut, copy, and paste text. Most users expect

to find this feature as part of the application feature set. However, while this type of

feature is a good addition to the overall list of features, it is not a feature necessary for the

application to function. Thus, it is not a minimal feature. The list below outlines the

features that a typical user would expect of the application.

• The ability to print a human-readable configuration vector without saving
it to a file and opening it in another application

• Drag and drop a configuration vector file onto the application to open it

• Cut, copy, and paste for all the text fields inside the application

• Multiple instances of the application

• The ability to create user-defined presets

• The ability to load in default presets and user-defined presets

• Easy navigation between fields inside the application (i.e., tab goes to the
next field, enter goes to the field below, etc.)

 49

• The tables of the application are dynamic and only show the number of
rows required for the current configuration vector instead of the maximum
number of rows per table.

• The text color of permissions tables should be colored according to the
type (e.g., RW colored red, RO colored black, NA colored green, WO
colored blue)

• Sub-windows from the application (i.e., a process window or permissions
window) should be the only window the user is able to focus on until the
apply or cancel button on that window is clicked

• All primary functions of the application are assigned a keyboard shortcut

• All dialog windows should be the only window the user is able to focus on
until the okay or cancel button for that dialog is clicked

• Text inside tables should be aligned appropriately based on the type of
information contained in the specific column

• Error checking should be accomplished on the fly without having to press
a check button

• Every field or button inside the GUI should have a tooltip that appears
when the user hovers the mouse over the object for a period of time

The features users expect are niceties and not necessities for the application.

However, these features add to the overall look and feel of the application. These

features were incorporated into the application as time permitted. Many of these features

were not implemented in the prototype and have been recommended for future

development. The next section briefly outlines graphical standards that increase overall

usability of the application.

3. Graphical Interface Standards

Because the configuration vector tool was created using the NetBeans IDE, it

automatically supplied many of the graphical interface standards that should be applied to

GUI applications. However, it is important to note the graphical standards followed [18]:

• Keyboard shortcuts adhere to the standard keyboard shortcuts used by
modern day operating systems (i.e., Ctrl+S (windows) or Cmd+S (mac)
for saving a file)

• System font is used for text in menus, dialogs, and full-sized controls

• Emphasized system font is used sparingly. The primary use is for the
message text in text alerts and for titles of group settings boxes.

 50

• All text input boxes use the application font as the default

• The font for labels is consistent across the application

• All sentences in the application are separated by a single space (a single
space between the ending punctuation of one sentence and the first word
of the next sentence).

• Labels for interface elements must be easy to understand and avoid
technical jargon as much as possible

• All words in titles are capitalized except the following: articles (a, an, the),
coordinating conjunctions (and, or), and prepositions of four or fewer
letters except when the preposition is part of a verb phrase (e.g., Go
To…).

• The ellipsis (…) character signifies that additional information is required
before the operation can be performed.

This section outlined the requirements, features, and graphical standards that were

used to design and implement the configuration vector tool GUI application. The next

section shows the first conceptual designs of the application.

G. CONCEPTUAL DESIGN OF THE CONFIGURATION VECTOR TOOL

This section shows the initial concept design diagrams used for the configuration

vector tool application. The graphics in this section are the result of six iterations of

design. Throughout the iterations, many different aspects of the application were refined

and improved in order to better meet the initial needs of the configuration vector tool.

The following set of figures show the finalized conceptual design sketch for the

initial version of the configuration vector tool. Each figure is a translation from the

configuration vector structs discussed in the Section B.

Figure 17 shows the partition table result after the translation. Figure 18 shows

the datafile table. Figure 19 shows the memory table. Figure 20 shows the event counts

table. Figure 21 shows the sequencers table. Figure 22 shows the partition-to-partition

table. Figure 23 shows the subject resource table. Figure 24 shows the process window

 51

that becomes visible to the user when the user clicks the processes column in the partition

table. Figure 25 shows the permissions window that becomes visible to the user when a

permissions column is clicked by the user.

Figure 17. Conceptual sketch of the partition table

 52

Figure 18. Conceptual sketch of the datafile table

Figure 19. Conceptual sketch of the memory table

 53

Figure 20. Conceptual sketch of the event counts table

Figure 21. Conceptual sketch of the sequencers table

 54

Figure 22. Conceptual sketch of the partition-to-partition table

Figure 23. Conceptual sketch of the subject resource table

 55

Figure 24. Conceptual sketch of the processes window and subjects table

Figure 25. Conceptual sketch of the permissions window and table

 56

This section showed the transformation from the lpsk.h file to the conceptual

graphical representation of a configuration vector. The interface shown in the figures of

this section directly map to the actual implementation of the configuration tool described

in the next section.

H. SUMMARY

This chapter began with the selection process used to select the correct

programming language and associated development tools: Java Swing and the NetBeans

IDE. Next, the chapter focused on the configuration vector format as described by the

lpsk.h header file. The breakdown of the lpsk.h file not only helped the developer

understand the configuration vector structure, but the model component of the MVC

paradigm became apparent as did the primary graphical design element (i.e., the table).

Next, the chapter described the table as the primary design element and then led the

reader through the thought processes behind the table refinements in the tool. The next

section focused strictly on the configuration vector requirements: reading a vector,

writing a vector, and checking a vector. These requirements were then fully discussed in

the features discussion of the configuration vector tool. These efforts led to the

conceptual design of the configuration vector tool. The conceptual design was a series of

sketches of what an actual implementation of the tool might look like. The next chapter

discusses the implementation and testing of this conceptual design.

 57

IV. IMPLEMENTATION AND TESTING

This chapter discusses the actual implementation and testing of the configuration

vector tool. It is important to note that the tool that was implemented and tested, as

described in this chapter, is a prototype. This chapter describes the underlying code

written to generate both the delegate and model components by outlining the

functionality of each of the Java class files. The chapter then describes the main

functionality of the GUI. Then, the section shows screenshots of the prototype followed

by a discussion of a concept of operation. The final section of the chapter presents the

results of the tests used to validate the prototype. The tests were split into two general

categories: error checking and input/output.

A. JAVA CLASS FILES

The Java class files that comprise the configuration vector tool are divided into

four separate categories: command line tools, GUI components, model components, and

additional controller components. The command line tool category contains a single Java

class. The command line tool was used to check and verify the output of the

configuration vector tool. The GUI component category contains the classes that create

the GUI, check the data input for errors, and add data to the model components.

The model component category contains all components specific to the model.

The model component files are special because the files are completely independent of

any files in the other categories. All of these classes of the model component category

are direct translations of the lpsk.h structs into Java-style representations. The

VectorStruct.java file contains references to all of the other model component files. This

means that in order to create a new and empty configuration vector, a developer only

needs to instantiate a new VectorStruct.

 58

The additional controller component category contains additional controller

component files that were removed from the main GUI class file (i.e., CVToolGUI.java)

to enable reuse across the entire application. This simplifies the code required by the

main GUI class. Table 9 shows a detailed breakdown for each file of the configuration

vector tool.
Java Classes

Category Name Description

Command
line tool CVDump.java

This tool has the ability to read in a
binary configuration vector file and
generate a syntactically correct binary
configuration vector file. This tool does
not do any error checking. If the read-in
configuration vector is incomplete, it will
fill the blank fields with zeros upon
writing the file out to disk. The primary
purpose of this tool is to verify that the
configuration vector generated by the
configuration vector tool is correct. This
is discussed in more detail in the testing
section.

CVToolGUI.java

This class is the Configuration Vector
Tool GUI class. This class is the main
class of the configuration vector tool (i.e.,
the view/controller component). This
class creates the main window of the
application and contains the application’s
main method. The class accesses all
other classes in order to display the data
to the user, allows the user to edit the
data, and to save/export the data. The
class also has the methods that
accomplish the primary error checking of
a given configuration vector.

ProcSubjGUI.java

This class provides the code for the GUI
window used to define a process. This
also provides error checking for the
subjects that it takes as input at its
interface.

GUI
component

PermsGUI.java This class provides the code for the GUI
window for declaring permissions.

VectorDefs.java This class is the Java representation of the
definitions section of the lpsk.h file.

VectorStruct.java This class is the Java representation of the
vector_struct of the lpsk.h file.

PartitionStruct.java
This class is the Java representation of the
partition_struct of the lpsk.h
file.

Model
component

DatafileStruct.java This class is the Java representation of the

 59

Java Classes
Category Name Description

datafile_struct of the lpsk.h
file.

MemoryStruct.java This class is the Java representation of the
memory_struct of the lpsk.h file.

SynchronizationStruct.java

This class is the Java representation of the
synchronization_struct of the
lpsk.h file. This file is used to create
the data structure for the eventcounts and
sequences.

PartPerm.java

This class is the Java representation of the
part_perm[][] two-dimensional
array of the lpsk.h file.

SubjResPermStruct.java
This class is the Java representation of the
subj_res_perms struct of the
lpsk.h file.

ProcessStruct.java This class is the Java representation of the
process_struct of the lpsk.h file.

SubjectStruct.java This class is the Java representation of the
subject_struct of the lpsk.h file.

PrintVec.java

This class contains methods that allow the
developer to print the configuration
vector to the terminal screen for
debugging and is also used by the user to
create a human-readable configuration
vector file.

Utilities.java

This is a main controller class of the
application. It sets the defaults for all
tables and also assigns default values for
every object in the configuration vector
tool.

Additional
controller

component

Validator.java The methods of this class are used to do
error exception checking.

Table 9. Java class files of the configuration vector tool

B. PRIMARY GUI CLASS

Similar to the VectorStuct class, the CVToolGUI class is the primary Java class

for the view/controller component. The CVToolGUI class contains the methods that

create the view component (i.e., the main application window as well as the tabbed panel

of tables). This class uses the two other classes in the GUI component category of Table

9 to gather additional data from the user (additional view components). The CVToolGUI

class also contains the controller code that adds data from the view component to the

model component. All data gathered by the view component is error checked by the

controller component before it is sent to the model component data structures. The

 60

following discussion explains the error checking functionality as well as the reading and

writing of data from the CVToolGUI class (Table 10 provides a summary of this

discussion).

The error checking for all the visible tables in the main window is accomplished

in the CVToolGUI class. All of the error checking is accomplished when the user presses

either the check button or the export button of the main application window. The tables

embedded within the intermediate tables (i.e., the subject table contained in the process

window of the partition table) are error checked when the user either presses the check

button or the apply button of that window.

Live error checking within each table of the application (applicable to all

windows) is also applied as the user enters data into each table. However, this error

checking only restricts the type of information that may be entered into the specific cell

of the table. For instance, the time slice column of the partition table will only allow

integer values. If the user attempts to enter other data types, such as a string of

characters, the user is unable to move on to another cell before fixing the data. No error

message is displayed to the user in the initial prototype. Instead, the table cell border

turns red to notify the user that there is a data type problem.

If all data entered in the CVToolGUI class passes the error checking methods of

the class, the data is passed into the VectorStruct when the user presses the export button.

The export button writes the binary configuration vector file to a user-specified location

on disk. If the user wishes to bypass the error checking methods contained in the export

button, the user must select the save or save as menu item from the file menu in the menu

bar. Save writes the contents of the main application window as well as completed sub-

windows (i.e., a process window or permissions window) to the same human-readable

file that was originally opened by the user. If the user opened a binary file, the save

command does not save the file in the binary format. In this case, the save command acts

like a save as command and writes a human-readable file to a user-specified location.

The save as command enables the user to save a human-readable file to a user-specified

location with a user-specified file name.

 61

It is important to notice the distinction between the save and save as commands

and the export command. The save and save as commands will only write a human-

readable file to disk. The export command creates the binary file that is used to initiate

the LPSK platform. These choices provide the user with a great deal of flexibility. It

allows the user to create or open a vector file, save the file to disk, exit the application,

and open the file later without having to ensure the vector file is error-free or complete.

In addition, this environment prevents the user from creating an invalid binary file. This

saves the user from attempting to boot a LPSK platform with a syntactically or

semantically invalid binary configuration vector, which will only result in a halt of the

platform.

The final major requirement of the application is to read a previously created

vector file. As previously discussed, the application will only open syntactically correct

vector files. However, similar to the save and save as command, the configuration vector

tool will allow a vector that has incorrect semantic values to be opened. This allows the

user the ability to correct any invalid data before exporting a binary file. As stated in the

previous section, the tool will not allow the user to export an invalid binary file even if

the file opened by the user has invalid values.
Command Action

New Creates a blank configuration vector file by instantiating a new VectorStruct.

Save

Allows the user to write data from the GUI to a human-readable file only. The file is
written to the same human-readable file that was originally opened by the user. If a
binary file was opened, the save command defaults to the save as command. The
data written to a file may be semantically incorrect but will be syntactically correct.

Save As Similar to the save command except it allows the user to specify the location and file
name of the human-readable file to write to disk.

Check Applies all semantic error checks, notifying the user of any errors encountered.

Export
Accomplishes the same tasks as the check command but also writes a binary
configuration vector file to a user-specified location and file name if and only if all of
the error checks were passed.

Apply Used in the sub-windows and applies all error checks, notifying the user of any errors
encountered.

Table 10. List of the basic commands of the configuration vector tool

This section described the functionality of the primary CVToolGUI class. The

next section discusses the features not implemented in this prototype.

 62

C. PROTOTYPE

This section details the implementation of the configuration vector tool prototype.

The section is broken into two subsections containing screenshots of all tables of the

application and detailed explanations of all items of the application.

1. Screenshots

This section shows the actual implementation screenshots of the configuration

vector tool. Each figure in this section corresponds directly to the conceptual designs

discussed earlier. Figure 26 shows the implementation of the partition table. Figure 27

shows the implementation of the datafile table. Figure 28 shows the implementation of

the memory table. Figure 29 shows the implementation of the eventcounts table. Figure

30 shows the implementation of the sequencers table. Figure 31 shows the

implementation of the partition-to-partition table. Figure 32 shows the implementation of

the subject-resource permissions table. Figure 33 shows the implementation of the

process window and associated subject table. Figure 34 shows an example of a specific

implementation of a permissions window.

Figure 26. Partition table view of the application

 63

Figure 27. Datafile table view of the application

Figure 28. Memory table view of the application

 64

Figure 29. Eventcounts table view of the application

Figure 30. Sequencers table view of the application

 65

Figure 31. Partition-to-partition table view of the application

Figure 32. Subject-resource permissions table view of the application

 66

Figure 33. Process and subject window of the application

Figure 34. Permissions window and associated table view of the application

 67

2. Concept of Operation

The purpose of this section is to explain how the configuration vector tool

operates. This section can be treated as a brief tutorial on how to create, edit, save, and

export a configuration vector using the tool. The section first describes each window

presented to the user and then provides basic steps for accomplishing typical tasks.

After launching the configuration vector tool, the user is presented with the main

application window (see Figure 26). The main application window is broken into two

distinct areas. The top third of the window contains the vector attributes panel and the

bottom two-thirds contains the tabbed tables panel. The vector attributes panel includes

the six items discussed during the design phase of this research. The Version and Magic

fields cannot be changed by the user and are fixed by the configuration vector tool (or the

values of these fields are set upon opening a previously created configuration vector). In

a future prototype, the version field will be updatable by the user through a preferences

window (see Chapter V, Section B). The far right side of the vector attributes panel

allows the user to specify the number of partitions, eventcounts, or sequencers for the

configuration vector (see Figure 35). Because a configuration vector must have at least

one active partition, the default value for the Number of Partitions is one. The TPA

partition is a dropdown menu that includes the maximum number of partitions available.

The user must select the desired partition to set as the TPA partition (only one partition

may be set as the TPA partition).

Figure 35. The vector attribute panel of the main window

As stated in the design discussion, each table of the tabbed table panel represents

a specific configuration vector structure. A single row of any table represents an

individual item of a specific structure. For instance, in the partitions table, row zero

 68

represents the specific partition information for Partition 0 (see Figure 36). All tables

within the configuration vector tool have this same relationship between the GUI

representation and the underlying data structure.

Figure 36. View of row zero of the partition table

The next step after opening the tool is to begin filling in data. The user should fill

out all tables and fields with the desired data. This includes adding processes to a

specific partition or setting the permissions for the eventcounts, sequencers, and subject-

resource permissions. As previously stated, data types are validated on the fly. This

means a user attempting to enter a letter in the time slice or maximum memory column of

the partition table will not be able to exit the cell until the correct data type is entered.

The table does not check the bounds on the fly. Once data is entered in the tables of the

tool, the user can do one of three things:

1. check the vector for errors by pressing the check button,
2. save the current vector in a human-readable format by selecting the save

or save as menu item from the file menu, or
3. attempt to export a binary configuration vector file to a specific location.

If the user presses the check button, the tool will error check all cells in all the

tables and report any errors to the user with a popup dialog that provides the specific

error and recommendation for fixing the error. The tool will also reset the value of the

invalid cell to the default value. No file is saved or exported by clicking the check

button.

If the user selects the save as menu item, the current values in the configuration

vector tool are written to a human-readable file. Although this file is syntactically

correct, the values within the file may not be semantically valid. Saving a vector file

 69

allows the user to continue editing the file later. The only difference between the save

and save as command is that the save as command allows the user to select the name and

location of the human-readable file.

If the user presses the export button, the vector is checked just as if the check

button was pressed. The export will fail if the check encounters an error. The error is

reported to the user in the same manner as clicking the check button. If the check is

passed, the tool provides the user a dialog box that allows the user to select the name and

location of the output file. Once this is completed a binary vector is exported to the

desired location.

The final main feature of the tool is opening a configuration vector file and

creating a new vector file. The tool can open either a syntactically correct human-

readable file or a syntactically correct binary file. If the file is invalid, the tool reports an

error message with the location of the first error encountered to the user. Otherwise, the

file is opened, the data is read into the tool and the appropriate fields are filled. The user

opens a configuration vector file by selecting the open menu item from the file menu in

the menu bar. A dialog window is presented to the user allowing the user to locate and

select the desired file. Once the vector file is opened, the values may be edited and saved

or exported as desired. Creating a new configuration vector simply requires the user to

start the configuration vector tool or select the new menu item from the file menu in the

menu bar.

This section outlined the main features of the configuration vector tool and

provided a brief tutorial on how a user might use the configuration vector tool. The final

section in this chapter describes the testing procedures that were performed against the

tool and the results of those tests.

D. TESTING

This section outlines the test plan and procedures used to validate the

configuration vector tool. Testing the configuration vector occurred in two phases. The

first phase tested the bounds of the data within the fields while in the tool. The second

 70

phase tested the input/output capabilities of the tool. The subsequent sections report the

testing plan and results of each testing phase.

1. Phase I: Error Checking

This phase tested the bounds error checking ability of the configuration vector

tool. All input fields of the configuration vector tool were checked to ensure that each

complied with the respective bounds listed in the requirements section. The tool enforces

the bounds by restricting the user’s ability to input incorrect data in addition to checking

the data when the user presses the check, apply, or export button. The following tables,

Table 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 show the GUI mechanism used to enforce

a restriction and the restriction that is enforced. Each of the fields listed in the tables

were checked using the following procedures:

• Launch the configuration vector tool

• Verify every table to ensure that all values in each field are set to the
default value

• Enter edge-case values in an individual field (e.g., if the field has a bound,
enter data that tests that bound). Ensure the value is set to the default
value before moving on to the next tested field.

Vector Attributes Panel

Field Name Restriction
Mechanism Enforced Restriction

Version Read-only text field Read-only
Magic Read-only text field Read-only

TPA Partition Dropdown selection
box

Only one value may be selected by the user (up to the
maximum number of partitions)

Number of
Partitions Spinner text field Only values greater than 0 and less than or equal to the

maximum number of partitions may be entered
Number of

Eventcounts Spinner text field Only values greater than or equal to 0 and less than the
maximum number of eventcounts may be entered

Number of
Sequencers Spinner text field Only values greater than or equal to 0 and less than the

maximum number of sequencers may be entered

Table 11. Vector attributes panel restrictions

 71

Partition Table

Field Name Restriction
Mechanism Enforced Restriction

Integer only cell Ensures only integers may be entered
Identifier Check/Export button Ensures the identifier is unique to the partition table and

greater than zero

Description Check/Export button
Ensures the length of the text entered is less than the
maximum description length defined in the
VectorDefs.java file

Integer only cell Ensures only integers may be entered
Ensures individual time slice values are between 0 and 100
inclusive
*Set to 0 if the partition is not active (dependent on the
active field of the partition table)

Time Slice % Check/Export button

*Ensures the sum of all time slices across all defined
partitions equals 100

Integer only cell Ensures only integers may be entered Max Memory Check/Export button Ensures the maximum memory is greater than zero
Checkbox Ensures that only on or off can be checked

Active Check/Export button *Ensures that at least one partition of the defined partitions
is set to active and that partition has at least one process

Dropdown selection
box

Ensures only values between 0 and the maximum number
of processes may be selected # of Processes

Check/Export button *Ensures that if the active box is unchecked, then the
number of processes is set to zero

Read-only & click
to launch processes

window
n/a

Processes

Check/Export button *Ensures that if the processes is set to zero then the
subjects defined in the processes window are cleared.

 * Requires more complex test procedures than discussed above

Table 12. Partition table restrictions

Datafile Table

Field Name Restriction
Mechanism Enforced Restriction

Partition Dropdown selection
box

Ensures that the user may only select a partition number
from the defined partitions

Integer only cell Ensures only integers may be entered
Identifier Check/Export button Ensures the identifier is unique to the partition table and

greater than zero

Privilege Dropdown selection
box Only allows the selection of 0, 1, 2, or 3

Path Check/Export button Ensures the length of the text entered is less than the
maximum path length defined in the VectorDefs.java file

Permissions
Read-only & click

to launch
permissions window

n/a

Table 13. Datafile table restrictions

 72

Memory Table

Field Name Restriction
Mechanism Enforced Restriction

Partition Dropdown selection
box

Ensures that the user may only select a partition number
from the defined partitions

Integer only cell Ensures only integers may be entered
Identifier Check/Export button Ensures the identifier is unique to the partition table and

greater than zero

Privilege Dropdown selection
box Only allows the selection of 0, 1, 2, or 3

Integer only cell Ensures only integers may be entered
Size Check/Export button Ensures that the maximum size does not exceed the

maximum physical memory of the system

Permissions
Read-only & click

to launch
permissions window

n/a

Table 14. Memory table restrictions

Eventcounts Table

Field Name Restriction
Mechanism Enforced Restriction

Name Check/Export button Ensures the length of the text entered is less than the
maximum path length defined in the VectorDefs.java file

Privilege Dropdown selection
box Only allows the selection of 0, 1, 2, or 3

Permissions
Read-only & click

to launch
permissions window

n/a

Table 15. Eventcounts table restrictions

Sequencers Table

Field Name Restriction
Mechanism Enforced Restriction

Name Check/Export button Ensures the length of the text entered is less than the
maximum path length defined in the VectorDefs.java file

Privilege Dropdown selection
box Only allows the selection of 0, 1, 2, or 3

Permissions
Read-only & click

to launch
permissions window

n/a

Table 16. Sequencer table restrictions

Partition-to-Partition Perms Table

Field Name Restriction
Mechanism Enforced Restriction

All cells Dropdown selection
box

Only one value may be selected:
NA, RO, RW, WO

Table 17. Partition-to-partition table restrictions

 73

Subject-Resource Perms Table

Field Name Restriction
Mechanism Enforced Restriction

All Cells
Read-only & click

to launch
permissions window

n/a

Table 18. Subject-resource table restrictions

Process Window

Field Name Restriction
Mechanism Enforced Restriction

Identifier Read-only field Value is unique to across all processes windows and
greater than or equal to zero

Read-only field n/a Number of
Subjects Check/Apply button Calculated by counting the number of subjects defined in

the executable path field of the subjects table.
n/a n/a

Executable Path Check/Apply button Ensures the length of the text entered is less than the
maximum path length defined in the VectorDefs.java file

n/a n/a
Ensures the length of the text entered is less than the
maximum path length defined in the VectorDefs.java file Gate Path Check/Apply Button
Ensures the PL3 gate is always empty

Table 19. Process window restrictions

Permissions Window

Field Name Restriction
Mechanism Enforced Restriction

Permissions Dropdown selection
box

Only one value may be selected:
NA, RO, RW, WO
(Permissions originating from the sequencers table may
only be NA and RO)

Table 20. Permissions window restrictions

Every field in the tool was verified to work as described by the restrictions listed

in the tables above except for the starred restrictions. These fields required a more

complicated test procedure. For each starred item, the tests were conducted by first

entering correct data into the tables. This means that all data initially entered into the tool

was verified as correct before beginning a test. The information then was modified to test

each error case. The starred items are represented by the Special Tests (SPT) in the list

below:

 74

• SPT1 (Partition table – Time slice %): the check/export button ensures that
the time slice is set to 0 if the partition is not active (dependent on the
active field of the partition table)

• SPT2 (Partition table – Time slice %): the check/export button ensures the
sum of all time slices across all defined partitions equals 100.

• SPT3 (Partition table – Active): the check/export button ensures that at
least one partition of the defined partitions is set to active.

• SPT4 (Partition table – # of processes): the check/export button ensures
that if the active box is unchecked, then the number of processes field is
set to zero and all subjects are cleared from that process.

• SPT5 (Partition table – Processes): the check/export button ensures that if
the processes is set to zero then the subjects defined in the processes
window are cleared.

The test procedure for these starred items is described in Table 21. For these

tests, the configuration vector tool was launched and default values were verified across

all tables. After entering the specific test data described in Table 21, the check/export

button was pressed to activate the checking mechanisms. Finally, after confirming the

expected results, the configuration vector tool was closed and then the next set of tests

was started.
Test

Name Test Procedure Expected Observed

Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition 0:
‐ set the time slice cell to 1.
‐ uncheck the active checkbox.
For Partition 1:
‐ set time slice cell to 99.
‐ check the active checkbox.
Press the check/export button.

- Error reported to user.
- Partition 0 is cleared of all data.
- The number of partitions field is
corrected automatically.
- A time slice error is presented to the
user. All time slice %s across all active
partitions must be equal to 100.

Same as
expected

SPT1 Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition 0:
‐ set the time slice cell to 1.
‐ check the active checkbox.
For Partition 1:
‐ set time slice cell to 99.
‐ check the active checkbox.
Press the check/export button.

No error reported. Same as
expected

SPT2 Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition 0:
‐ set the time slice cell to 3.
‐ check the active checkbox.

‐ Error reported to the user
‐ Time slice % of defined partitions

exceeds 100. Please correct time
slice % across all defined
partitions.

Same as
expected.

 75

Test
Name Test Procedure Expected Observed

For Partition 1:
‐ set time slice cell to 98.
‐ check the active checkbox.

Press the check/export button.
Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition 0:
‐ set the time slice cell to 1.
‐ check the active checkbox.
For Partition 1:
‐ set time slice cell to 98.
‐ check the active checkbox.
Press the check/export button.

‐ Error reported to the user.
‐ Time slice % of defined partitions

does not equal 100. Please correct
time slice % across all defined
partitions.

Same as
expected.

Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition 0:
‐ set the time slice cell to 2.
‐ check the active checkbox.
For Partition 1:
‐ set time slice cell to 98.
‐ check the active checkbox.
Press the check/export button.

No error reported. Same as
expected.

Load two complete partitions into the
table.
Set the number of partitions to 2.
Set TPA Partition to Partition 0.
Uncheck all active checkboxes.
Press the check/export button.

‐ Error reported to the user.
‐ At least one partition must be

active.

Same as
expected.

SPT3
Load two complete partitions into the
table.
Set the number of partitions to 2.
Set TPA Partition to Partition 0.
Uncheck all active checkboxes.
For Partition 0:
‐ set the time slice cell to 100.
‐ check the active checkbox.
Press the check/export button.

‐ Error reported to the user.
‐ User is presented with an option to

clear additional information in the
table and automatically correct the
number of partitions to the value 1.

Same as
expected.

Set the number of partitions to 2.
Uncheck all active checkboxes.
For Partition 0:
‐ set the time slice cell to 100.
‐ check the active checkbox.
For Partition 1:
‐ set # of processes to 1.

‐ Error reported to the user.
‐ User is presented with an option to

clear additional information in the
table and automatically correct the
number of partitions to the value 1.

Same as
expected.

SPT4

Set the number of partitions to 2.
Uncheck all active checkboxes.
For Partition 0:
‐ set the time slice cell to 100.
‐ check the active checkbox.

No error reported. Same as
expected.

SPT5 Set the number of partitions to 2.
For Partition 0:

‐ Error reported to the user.
‐ User is informed that the partition

Same as
expected.

 76

Test
Name Test Procedure Expected Observed

‐ set all fields with correct values.
‐ set the time slice cell to 50.
‐ check the active checkbox.
‐ set number of processes to 1.
‐ ensure that there are subjects.
For Partition 1:
‐ set all fields with correct values.
‐ set the time slice cell to 50.
‐ check the active checkbox.
‐ set number of processes to 0.
‐ ensure that there are subjects.

does not have subjects.

Table 21. Special tests table for starred entries

2. Phase II: Input/Output

This phase tested the tool’s ability to perform input and output operations to disk.

The main functions tested were creating a new vector, opening a vector, saving a vector

(to include save and save as commands), and exporting a binary vector. Since all files

created by the tool will be either human-readable or binary, it is important to discuss how

it was determined if the files written to disk were correct and valid. For a human-

readable file, manually verifying the content in the generated file was sufficient (although

tedious). The binary file, however, required verification that is more complex. For this

reason, the CVDump command line tool was developed and used.

The CVDump tool is a command line tool. It reads in a binary vector file and

writes the same vector file to disk with a different name (appends _write to the original

file name) using the same methods employed by the GUI tool. This allows the two files

(original and generated) to be compared against one another. Before CVDump could be

used for verifying vector files generated by the tool, CVDump itself was verified to work

correctly. This was accomplished by obtaining a known valid and correct binary

configuration vector file (this vector was created by hand and used to successfully

initialize the LPSK to a secure state). The known binary file was read by the CVDump

tool. The CVDump tool then created a new binary file based on this known binary file.

The two files sizes and hashes were then compared. If both the size and hash of the two

files were the same, then the CVDump tool generated a correct and valid binary

 77

configuration vector file. The known good binary configuration vector file obtained for

this test was vect_out. The commands used to generate the outputs are listed in Table 22

and results of the comparison are shown in Table 23.
Description Command Results

1. Obtain a specific
file size ls –l cvt/filename*

File size of the desired
file is printed on the
screen.

2. Hash a specific
file md5 cvt/filename*

The MD5 hash of the
desired file is printed on
the screen

3. Execute CVDump java cvt/CVDump -d -v cvt/filename

Executes the CVDump
tool that creates a new
binary file:
filename_write

4. Hash the new file md5 cvt/filename_write
The MD5 hash of the
desired file is printed on
the screen

Table 22. Commands used to verify the CVDump tool

Version File Name Size MD5 Hash
Original vect_out 35320 b9cd53d8d502be0a2482f3acdd0b358c

Generated vect_out_write 35320 b9cd53d8d502be0a2482f3acdd0b358c

Table 23. Verification of CVDump command line tool

The verification of the CVDump tool made it possible to use the tool to check the

output binary files generated by the configuration vector tool. As long as a binary vector

file generated by the graphical tool and then processed through the CVDump as described

above hashes to the same value, it was assumed that the graphical tool generated a correct

and valid binary configuration vector file. With the CVDump tool verified, the

remainder of the section outlines the test procedures and results of those tests.

The test plan for checking the values of the input fields is as follows (IO

represents Input/Output Test):

• IO1: Create a new configuration vector by opening the tool.

• IO2: Create a new configuration vector by selecting the new menu item
from the file menu in the menu bar.

• IO3: Attempt to open a valid and an invalid existing human-readable
configuration vector file by selecting the open menu item from the file
menu in the menu bar.

 78

• IO4: Attempt to open a valid and an invalid existing binary configuration
vector file by selecting the open menu item from the file menu in the menu
bar.

• IO5: Attempt to save an opened human-readable configuration vector by
selecting the save menu item from the file menu in the menu bar.

• IO6: Attempt to save an opened binary configuration vector by selecting
the save menu item from the file menu in the menu bar.

• IO7: Attempt to save an opened human-readable configuration vector by
selecting the save as menu item from the file menu in the menu bar.

• IO8: Attempt to save the opened binary configuration vector by selecting
the save as menu item from the file menu in the menu bar.

• IO9: Attempt to export a valid configuration vector by selecting the export
menu item from the file menu in the menu bar or pressing the export
button.

• IO10: Attempt to export an invalid configuration vector by selecting the
export menu item from the file menu in the menu bar or pressing the
export button.

• Capture the results of these tests in a table.

The test results were captured in several tables. These tables were divided based

on the attempted function performed (i.e., new, open, save/save as, and export). Table 24

captures the test results after executing the new command. Table 25 captures the test

results after executing the open command. Table 26 captures the test results after

executing the save or save as commands. Table 27 captures the test results after

executing the export command. All tables contain the name of the test (e.g. IO1 as listed

above), the procedure used, the expected result, and the observed results. For all binary

file comparisons, CVDump was used and the resulting file sizes and hashes were

compared.
New

Name Procedure Expected Observed

IO1 - Launch the application All fields of the tools are set
to defaults Same as expected

IO2
- Launch the application
- Add data to fields
- Execute File > New

A message asking the user
if he is sure he wishes to
discard changes and create
a new vector

Same as expected

Table 24. Test results for creating a new configuration vector

 79

Open
Name Procedure Expected Observed

Human-readable
- Launch the application
- Execute File > Open
- Select valid test file

Application fills all fields
correctly Same as expected

IO3 Human-readable
- Launch the application
- Execute File > Open
- Select invalid test file

Application fails to open the
file and reports an error
message to the user

Same as expected

Binary
- Launch the application
- Execute File > Open
- Select valid test file

Application fills all fields
correctly Same as expected

IO4 Binary
- Launch the application
- Execute File > Open
- Select invalid test file

Application fails to open the
file and reports an error
message to the user

Same as expected

Table 25. Test results for opening a configuration vector

Save/Save As

Name Procedure Expected Observed

IO5

Human-readable
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value
- Execute File > Save
- Close the application
- Open saved file in a text
editor and look for the
change

The original human-
readable file should contain
the change added by the
application and should be
viewable in a text editor.

Same as expected

IO6

Binary
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value
- Execute File > Save
- Close the application
- Open saved file in a text
editor and look for the
change

The application should ask
the user to specify the name
and location of the file to
save. The change should be
viewable in a text editor.

Same as expected

IO7

Human-readable
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value
- Execute File > Save As
- Close the application
- Open saved file in a text
editor and look for the

The same as IO5 with the
addition that the application
should ask the user to
specify the name and
location of the file to save.

Same as expected

 80

change

IO8

Binary
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value
- Execute File > Save As
- Close the application
- Open saved file in a text
editor and look for the
change

The same as IO6 Same as expected

Table 26. Test results for saving a configuration vector

Export

Name Procedure Expected Observed

IO9

Binary
- Launch the application
- Execute File > Open
- Select valid test file
- Execute Export Button
- Close the application
- Use CVDump to verify
binary file.

The application should
successfully write a binary
file to disk. Using the
CVDump tool, the hashes of
the two files should match

Same as expected

IO10

Binary
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value so that the
vector is now invalid
- Execute Export Button

The application should
identify the error and not
complete the export

Same as expected

Table 27. Test results for exporting a configuration vector

3. Test Summary

The tests completed in this section tested the configuration vector tool in two

phases. The first phase tested the bounds of all fields inside the configuration vector tool.

The tests of that phase were completed upon entry of data into the tool and when the

check or export button was pressed. The second phase tested the input/output capability

of the tool. The second phase was completed using the CVDump command line tool in

combination with MD5 hashing. Together, these two phases provide a comprehensive

test of the basic operations of the configuration vector tool prototype.

 81

E. SUMMARY

This chapter discussed the prototype implementation of the conceptual design

outlined in Chapter III. The chapter began with a description of the Java files used to

implement the prototype. The next section showed screenshots of the implementation

along with the concept of operations. The final section in this chapter outlined the two

sets of tests (i.e., error checking and input/output) used to validate the initial prototype.

The next chapter discusses the results, problems encountered, and recommendations for

future work on the configuration vector tool.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

V. RESULTS

The initial implementation of the conceptual design of the configuration vector

tool, as described in this thesis, is the first in a possible series of prototypes. In creating

this prototype, this research has demonstrated that it is possible to build a GUI for

creating configuration vectors. The prototype is successfully able to read and write valid

binary configuration vectors. A valid configuration vector is one where all fields pass a

bounds check as well as a semantic check. The prototype can also read and write human-

readable configuration vectors. The human-readable files only pass a bounds check

allowing a user to save a configuration vector that may be incomplete. This allows the

user to complete a configuration vector at a later time. However, the prototype still

requires substantial work before it should be considered to be a fully functional product.

The four main reasons for its incompleteness are discussed in this chapter and are

summarized in the conclusion. This chapter starts with a discussion of two significant

problems encountered by the developer, followed by a discussion of incomplete features.

Finally, the chapter ends with a discussion of suggestions for future work and the

conclusion.

A. PROBLEMS ENCOUNTERED

During the development of the configuration vector tool prototype, two major

problems were encountered. These hindered the development of more user-friendly

features that were discussed in Chapter III, Section F. The following two sections discuss

these problems in detail.

1. wxPython

The first problem encountered during development was the initial choice of

wxPython as the preferred language. Although wxPython provides a complete feature set

for the creation of GUIs, the developer's inexperience with wxPython was considerable.

wxPython provides no support for easy placement of GUI elements in desired locations

on an interface canvas. Initially, the interface was designed completely by hand without

the use of a GUI builder. This proved to be more time-consuming and difficult than

 84

expected. Thus, the search for a GUI builder application was started. During this search,

the Boa Constructor IDE (see Chapter III, Section A) was discovered.

The developer found the Boa Constructor IDE unpolished and cumbersome.

Since the majority of the work to this point was completed in wxPython, the developer

was reluctant to change programming languages. This reluctance resulted in a

considerable loss of time. Since Boa Constructor was not found to be user-friendly, a

search for another GUI builder began. Unfortunately, the other Python-based GUI

builders did not provide any additional help. Thus, the choice was made to move to Java

and use the NetBeans IDE for development. Development went quickly after this choice

was made.

2. NetBeans Tables

The NetBeans IDE Swing GUI builder made the creation of simple GUIs quite

easy. However, it was not without its problems. For the most part, the objects of the

GUI can be graphically placed on a canvas. Unfortunately, the ability to highly

customize the graphical objects was not as simple. Specifically, customizing the table

object was quite difficult.

In order to customize a table object in NetBeans, a developer must go through the

NetBeans table builder interface. Unfortunately, few customization options are presented

to the developer. Thus, creating a customized table that can be displayed in complex

ways (e.g., only showing a certain number of rows) is difficult. Because of this difficulty

in table customization, the tables in the prototype configuration vector tool were kept as

simple as possible. Thus, customized features, such as controlling the number of rows

visible to the user or more elegant error controls, were not implemented. The next

section discusses a possible solution to the table customization problem encountered in

NetBeans as well as additional future work.

B. INCOMPLETE FEATURES

The initial prototype of the configuration vector tool meets all of the basic

requirements by implementing the basic feature set. This prototype of the tool has

 85

several issues with the basic feature set that must be mentioned. Before discussing these

issues, it is important to note that this release of the tool does not address any of the

features users expect (see Chapter III, Section F).

The tool lacks complete and elegant error checking. The tool is able to verify and

check the bounds on all attributes in the tables as well as provide dependency error

checking between cells of the tables. The tool currently checks that the values for the

attributes are within the defined limits when either the check button is pressed or when

the export button is pressed. A more elegant solution is to check the bounds as the user

enters each value and not allow the user to change from one cell to another without

correcting the identified error. Dependency errors should still be checked when the user

clicks a check button or attempts to export a vector.

Another incomplete feature is associated with the way the tool displays the tables

to the user. The tool only displays the maximum number of attributes available to the

user. The maximum number of attributes of each table is displayed regardless of whether

or not the user requires all of the attributes. For instance, according to the

MAX_PARTITIONS value stored in the VectorDefs.java file, the maximum number of

partitions is eight. Thus, the configuration vector tool displays eight partitions in the

partition table. However, in the vector attributes panel, there is an attribute to specify the

number of partitions defined in the vector. Thus, creating a table that dynamically

changes as the number of partitions field changes is desirable. For this prototype,

changing the number of partitions does not change the view of the table. A user must

specify the number of partitions in the vector attributes panel and then complete the

correct number of partitions in the partition table. The same is true for eventcounts and

sequencers. A similar issue exists with the number of processes field and the process

field of the partition table. A user must add a single process and then ensure that at least

one subject is filled out in the process window. Fortunately, when the vector is checked

(either by the user clicking the check button or attempting to export the vector), the tool

will notify the user of such errors and prompt the user to fix these errors.

 86

C. FUTURE WORK

Although there will probably be multiple changes, enhancements, and refinements

made to the design of the configuration vector tool in the future, this section focuses on

the suggested next steps with regards to the interface, features, and documentation. Thus,

this section is divided into four sections to address the interface, additional features,

refinements, and documentation.

1. Interface

The current interface for the configuration vector tool is based on tables. As

discussed in Section A of this chapter, the tables implemented for this prototype were

constructed by taking advantage of the NetBeans GUI builder. Unfortunately, tables

implemented using the NetBeans GUI builder are quite basic and lack advanced

customization features. This hindered the developer’s ability to finely control the display

of individual tables. Thus, the first recommendation for the next version of the

configuration vector tool is a complete rewrite of the code used to create the tables.

Perhaps a new Java class should be created that creates tables. This would allow for

maximum code reuse and allow future development of tables to be easier. With a

customized tables class, the developer should have the ability to create advanced features

such as hiding rows that are not specifically defined by the user of the configuration

vector tool.

Another addition that should be added to the interface is a message panel below

the tables. This panel would be read-only to the user of the configuration vector tool and

display only informational messages. The messages displayed in this area of the interface

would contain information specific to the field selected by the user. This would display

the bounds (as necessary) for the specific field as well as a brief description of the

selected field. This addition would increase the user's awareness of the data required in

order to create a configuration vector.

The final interface enhancement that should be added is a preferences window.

The preferences window should allow the user to specify default directories for exporting

or saving configuration vector files (both binary and human-readable). In addition, the

 87

preferences window should allow the user to set the fields that are read-only in the main

interface. These items include the version and path to the LPSK kernel file (PL0

executable path of the subject table).

2. Additional Features

Many additional features could be added to the configuration vector tool. For the

next version of the tool, the human-readable vector file generated by the tool should be

converted to an XML format, preset configuration vectors should be added, and a visual

representation of the vector created by the tool should be displayed to the user.

A vector file formatted in XML is an easy way to create a vector file that is both

human-readable and machine-readable. Following an XML standard would allow a more

streamlined approach to saving specific configurations for future use. The first step is

creating an XML schema for a valid vector file. Then, the current save/save as function

in the tool should be changed to save the file to the XML format. The open function

should also be changed to only read in valid XML vector files.

The next additional feature is presets. Presets allow the user to create a valid

configuration vector quickly and easily. Presets also enable the user to start from a

known template and modify the data as necessary. There should be two types of presets

implemented in the next version. The first is a set of default presets. These presets are

those that ship with the configuration vector tool. The second type of presets are those

that are defined by the user. Similar to opening a pre-existing configuration vector, user-

defined presets allow the user to save custom presets for future use.

The final feature that should be added to the configuration vector tool is a visual

representation of the current configuration created in the tool. In other words, the visual

representation would display a graphical picture of the configuration vector the user has

created. This feature should be invoked by default when the check button is pressed.

When the export button is pressed, the user should be given the option of graphically

displaying the configuration vector or proceeding directly to exporting the file. This

would enable the user to actually "see" what has been created and to visually verify the

configuration.

 88

3. Refinements

Aside from the interface changes and the additional features previously discussed,

the configuration tool also requires minor refinements in order to make it a more

complete product. All of these items increase the usability of the tool. These refinements

are listed below.

• Center column values in all tables

• Increase the text size of the tables

• Add color-coding to permissions window (e.g., NA colored red, RW
colored green, etc.)

• Add color-coding to identify errors in table cells

• Add tooltips to all fields and buttons

• Tooltips for a partition should contain all relevant data for that partition

• Refine error messages

• Add the capability to create a message authentication code for an input
configuration vector

• Refine selection behavior of the tables

• Refine resizing of the main window

• All sub-windows (i.e., process window and permissions window) must
restrict focus and not allow a user to click on the main window without
completing the current sub-window

4. Documentation

The configuration vector tool requires two types of documents: a configuration

vector reference manual and a configuration vector tool user guide. The configuration

vector reference manual should contain information specific to the configuration vector.

This reference manual should contain the descriptions and bounds for all variables of the

configuration vector. It should also provide several examples of valid configuration

vectors and should describe how those vectors implement a particular policy. This will

allow a trusted user to better understand exactly what he or she is trying to create. The

configuration vector tool user guide should contain the instructions on how to correctly

use the configuration vector tool to create or manipulate a configuration vector.

 89

D. CONCLUSION

The prototype configuration vector definition tool was designed to meet the need

for a better way to create the configuration vectors used to initialize the LPSK. Although

the prototype needs more work before it should be considered operational, the initial

design is complete. Before the prototype can be considered fully functional, four

problems need to be addressed. First, the tables created using the NetBeans GUI builder

need to be rewritten to allow the developer complete control of all cells in the table.

Second, the human-readable configuration vector created by the tool should be converted

to XML, which will provide more flexibility. Third, a visual representation the

configuration allowing the user to visualize the configuration before exporting a binary

configuration vector file is needed. Finally, to increase the usability of the tool, the

refinements discussed should be implemented. Since the prototype follows the MVC

design paradigm (see Chapter II, Section B), the backend of the tool is completely

separate from the GUI front-side. Thus, modifications to the tool’s GUI do not affect the

underlying data structures. This allows for the development of GUI improvements as

necessary.

This research developed the initial design of the LPSK configuration vector tool

and created a partially functional prototype. The goal of creating a graphical interface for

the configuration vector tool was achieved. However, the prototype must be refined

before becoming operational. The prototype was designed to be robust enough to handle

such changes without significant effort.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

APPENDIX

The following four pages contain the code for the lpsk.h file for the Least

Privilege Separation Kernel (LPSK). All structures as well as all constants were

referenced from this file to create the configuration vector tool.

 92

 93

 94

 95

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

LIST OF REFERENCES

[1] C. E. Irvine, T. E. Levin, T. D. Nguyen, and G. W. Dinolt, “The Trusted
Computing Exemplar Project,” in Proceedings of the 5th IEEE Systems, (Military
Academy, West Point, NY), pp. 109-115, IEEE Computer Society Press, June
2004.

[2] C. E. Irvine and K. Levitt, “Trusted Hardware: Can It Be Trustworthy?” in
Proceedings of the 44th Annual Design Automation Conference, DAC ’07, ACM,
2007.

[3] Common Criteria for Information Technology Security Evaluation, Part 3:
Security assurance requirements, Version 2.1, CIMB-99-033, August 1999.

[4] U.S. Government Protection Profile for Separation Kernels in Environments
Requiring High Robustness, Version 1.03, Information Assurance Directorate,
2007.

[5] S. Burbeck, “Applications Programming in Smalltalk-80(TM): How to use
Model-View-Controller (MVC),” 4 March 1997. Available: http://st-
www.cs.illinois.edu/users/smarch/st-docs/mvc.html (accessed 8 October 2009).

[6] Java BluePrints Model-View-Controller, Sun Microsystems, Inc., 2002.
Available: http://java.sun.com/blueprints/patterns/MVC-detailed.html (accessed
15 October 2009).

[7] A. Fowler, “A Swing Architecture Overview,” Sun Microsystems, Inc., 2009.
Available: http://java.sun.com/products/jfc/tsc/articles/architecture/ (accessed 8
October 2009).

[8] Microsoft.NET, Microsoft, 2009. Available: http://www.microsoft.com/NET/
(accessed 3 August 2009).

[9] Cocoa, Apple Inc., 2009. Available: http://developer.apple.com/cocoa/ (accessed
3 August 2009).

[10] wxPython. 22 May 2009. Available: http://www.wxpython.org/ (accessed 2
August 2009).

[11] Java SE Downloads, Sun Developer Network (SDN), Sun Microsystems, 2009.
Available: http://java.sun.com/javase/downloads/index.jsp (accessed 3 October
2009).

[12] What is wxPython?, wxPython, 2009. Available:
http://www.wxpython.org/what.php (accessed 2 August 2009).

 98

[13] wxPyWiki. 25 Nov 2009. Available: http://wiki.wxpython.org/ (accessed 2
August 2009).

[14] SDN: A Community for Sun Developers, Sun Microsystems, 2009. Available:
http://developers.sun.com/ (accessed 18 October 2009).

[15] wxGlade: a GUI builder for wxWidgets, 13 October 2009. Available:
http://wxglade.sourceforge.net/ (accessed 14 October 2009).

[16] Boa Constructor, 2003. Available: http://boa-constructor.sourceforge.net/
(accessed 14 October 2009).

[17] NetBeans IDE 6.7 Connects Developers, NetBeans, 2009. Available:
http://www.netbeans.org/index.html (accessed 17 October 2009).

[18] Introduction to Apple Human Interface Guidelines. Apple Inc., 20 August 2009.
Available:
http://developer.apple.com/mac/library/documentation/UserExperience/Conceptu
al/AppleHIGuidelines/XHIGIntro/XHIGIntro.html (accessed 10 August 2009).

 99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Susan Alexander
OASD/NII DOD/CIO
Washington, DC

4. George Bieber
OSD
Washington, DC

5. Kris Britton
National Security Agency
Fort Meade, Maryland

6. Ed Bryant
Unified Cross Domain Management Office
Maryland

7. John Campbell
National Security Agency
Fort Meade, Maryland

8. Deborah Cooper
DC Associates, LLC
Roslyn, Virginia

9. Grace Crowder
NSA
Fort Meade, Maryland

10. Louise Davidson
National Geospatial Agency
Bethesda, Maryland

 100

11. Vincent J. DiMaria
National Security Agency
Fort Meade, Maryland

12. Rob Dobry
NSA
Fort Meade, Maryland

13. Jennifer Guild
SPAWAR
Charleston, South Carolina

14. CDR Scott Heller
SPAWAR
Charleston, South Carolina

15. Dr. Steven King
ODUSD
Washington, DC

16. Steve LaFountain
NSA
Fort Meade, Maryland

17. Dr. Greg Larson
IDA
Alexandria, Virginia

18. Dr. Carl Landwehr
National Science Foundation
Arlington, Virginia

19. Dr. John Monastra
Aerospace Corporation
Chantilly, Virginia

20. John Mildner
SPAWAR
Charleston, South Carolina

21. Dr. Victor Piotrowski
National Science Foundation
Arlington, Virginia

 101

22. Jim Roberts
Central Intelligence Agency
Reston, Virginia

23. Ed Schneider
IDA
Alexandria, Virginia

24. Mark Schneider
NSA
Fort Meade, Maryland

25. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

26. Ken Shotting
NSA
Fort Meade, Maryland

27. Dr. Ralph Wachter
ONR
Arlington, Virginia

28. John Santos
CERDEC S&TCD Information Assurance Division
Fort Monmouth, New Jersey

29. Ernie Brickell
Intel
Hillsboro, Oregon

30. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, California

31. Paul C. Clark
Naval Postgraduate School
Monterey, California

32. Terrence M. Welliver
SFS students: Civilian, Naval Postgraduate School
Monterey, California

